- Урок 6
- Уравнение прямой с угловым коэффициентом
- Уравнение прямой с угловым коэффициентом: теория, примеры, решение задач
- Угол наклона прямой и угловой коэффициент прямой
- Уравнение с угловым коэффициентом
- Уравнение прямой с угловым коэффициентом, проходящей через заданную точку
- Переход от уравнения прямой с угловым коэффициентом к другим видам уравнений прямой и обратно
- Уравнение прямой с угловым коэффициентом
- Прямая, проходящая через данную точку в направлении, заданном угловым коэффициентом
- Прямая, проходящая через две данные точки
- Прямая, проходящая через данную точку параллельно данной прямой
- Уравнение прямой с угловым коэффициентом
Урок 6
уравнение Прямой с угловым коэффициентом.
уравнение Прямой, Проходящей через данную точку и имеющей данный угловой коэффициент.
уравнение Прямой, Проходящей через две данные точки.
Уравнение Прямой с угловым коэффициентом.
Выведем уравнение данной Прямой, если известны ее угловой коэффициент k и величина b отрезка ов, который она отсекает на оси оу.
итак, уравнение любой Прямой, не ПерПендикулярной оси ох, имеет вид (2). очевидно, верно и обратное: любое уравнение вида (2) оПределяет Прямую, имеющую угловой коэффициент k и отсекающую на оси оу отрезок, величина которого b.
Решение. находим угловой коэффициент: k= tgа = tgа/ 4=1. Подставив k и b в равенство (2), Получим искомое уравнение Прямой: у=1х+3 или у-х-3=0.
Пример 2. Построить Прямую, заданную уравнением у=0,75х+2.
решение. отложим на оси оу отрезок ов, величина которого равна 2, Проведем через точку в Параллельно оси ох отрезок, величина которого вN=4, и через точку N Параллельно оси оу отрезок, величина которого Nм=3 (т.к. 0,75=3 / 4).
После этого Проводим Прямую вм, которая и является искомой. она имеет данный угловой коэффициент k=0,75=3 /4 и отсекает на оси оу отрезок величины b=2.
Уравнение Прямой, Проходящей через данную точку и имеющей данный угловой коэффициент.
замечание. если Прямая Проходит ПерПендикулярно оси ох, т.е. ее угловой коэффициент обращается в бесконечность, то уравнение имеет вид х – х 1 =0. формально это уравнение можно Получить из уравнения (3), если разделить обе части уравнения (3) на k и затем устремить k к бесконечности.
решение. найдем угловой коэффициент: k = tgа = tg 45 0 =1. Подставим координаты точки м и значение углового коэффициента k в равенство (3), Получим уравнение Прямой: у-1=х-2 или у-х+1=0.
уравнение Прямой, Проходящей через две данные точки.
Пусть даны две точки м 1 (х 1 ;у 1 ) и м 2 (х 2 ;у 2 ). Приняв в уравнении (3) точку м(х;у) за м 2 (х 2 ;у 2 ), имеем у 2 – у 1 = k (х 2 – х 1 ). выразим из Последнего равенства k и Подставим его в уравнение (3), Получаем искомое уравнение:
Пример 4. составить уравнение Прямой, Проходящей через точки а(3;1) и в(5;4).
решение. Подставив координаты точек а и в в равенство (4), Получаем искомое уравнение Прямой: = или 3х – 2у – 7 =0.
Уравнение прямой с угловым коэффициентом
Рассмотрим три случая положения прямой в координатной плоскости.
1) Если прямая параллельна оси Oy.
В этом случае все её точки имеют одинаковые абсциссы. Например, если точка пересечения прямой с осью Ox имеет абсциссу a, то для всех точек прямой верно равенство
Это равенство является уравнением прямой, параллельной оси Oy.
2) Если прямая параллельна оси Ox.
Все точки прямой имеют одинаковые ординаты. Если точка пересечения прямой с осью Oy имеет ординату b, то для всех точек прямой верно равенство
это равенство является уравнением прямой, параллельной оси Ox.
3) Если прямая не параллельна ни одной из осей.
Пусть α — угол, который прямая образует с положительным направлением оси Ox, b — ордината точки пересечения прямой с осью Oy.
Выберем на прямой произвольную точку A(x;y). Проведём через точку A прямые, параллельные осям.
Рассмотрим образованный этими прямыми прямоугольный треугольник ABC.
AC=y-b, BC=x, ∠ABC=α (как соответственные при BC∥Ox и секущей AB).
Обозначим tgα=k. Число k называют угловым коэффициентом прямой (эта величина играет очень важную роль). Тогда
Это уравнение называют уравнением прямой с угловым коэффициентом.
Если A — точка, лежащая не в I четверти, рассуждения усложняются, но в результате приходим к тому же уравнению: y=kx+b.
Если угол α — тупой, в прямоугольном треугольнике находят тангенс угла, смежного с α.
Уравнение y=b можно считать частным случаем уравнения y=kx+b, что согласуется с геометрическим смыслом k, поскольку для прямой, параллельной оси Oy, α=0°, а tg0°=0.
Для прямой, параллельной оси Oy, уравнение x=a не является частным случаем уравнения y=kx+b (что также согласуется с геометрическим смыслом k, так как в этом случае α=90°, а tg 90° не существует).
Таким образом, уравнение прямой с угловым коэффициентом задает все прямые, не параллельные оси Oy:
Прямые, параллельные оси Oy, задаются уравнением x=a другого вида.
Уравнение прямой с угловым коэффициентом: теория, примеры, решение задач
Продолжение темы уравнение прямой на плоскости основывается на изучении прямой линии из уроков алгебры. Данная статья дает обобщенную информацию по теме уравнения прямой с угловым коэффициентом. Рассмотрим определения, получим само уравнение, выявим связь с другими видами уравнений. Все будет рассмотрено на примерах решений задач.
Угол наклона прямой и угловой коэффициент прямой
Перед записью такого уравнения необходимо дать определение угла наклона прямой к оси О х с их угловым коэффициентом. Допустим, что задана декартова система координат О х на плоскости.
Угловой коэффициент прямой – это тангенс угла наклона заданной прямой.
Угловой коэффициент положительный, когда график функции возрастает и наоборот. На рисунке показаны различные вариации расположения прямого угла относительно системы координат со значением коэффициента.
Для нахождения данного угла необходимо применить определение об угловом коэффициенте и произвести вычисление тангенса угла наклона в плоскости.
Уравнение с угловым коэффициентом
Ответ: М 1 принадлежит прямой, а М 2 нет.
Уравнение прямой с угловым коэффициентом, проходящей через заданную точку
Решение
Переход от уравнения прямой с угловым коэффициентом к другим видам уравнений прямой и обратно
Такое уравнение не всегда применимо для решения задач, так как имеет не совсем удобную запись. Для этого необходимо представлять в другом виде. Например, уравнение вида y = k · x + b не позволяет записать координаты направляющего вектора прямой или координаты нормального вектора. Для этого нужно научиться представлять уравнениями другого вида.
Уравнение прямой с угловым коэффициентом стало каноническим уравнением данной прямой.
Вычислим и представим в виде канонического уравнения прямой. Получим уравнение вида:
Для решения необходимо перейти к другому виду данного уравнения, для этого запишем:
Решим задачу обратную данной.
Исходя из условия, необходимо решить относительно у, тогда получим уравнение вида:
Каноническое уравнение можно привести к виду с угловым коэффициентом. Для этого:
Для решения таких заданий следует приводит параметрические уравнения прямой вида x = x 1 + a x · λ y = y 1 + a y · λ к каноническому уравнению прямой, только после этого можно переходить к уравнению с угловым коэффициентом.
Необходимо выполнить переход от параметрического вида к угловому коэффициенту. Для этого найдем каноническое уравнение из заданного параметрического:
Уравнение прямой с угловым коэффициентом
Прямая, проходящая через данную точку в направлении, заданном угловым коэффициентом
Пусть на плоскости xOy задана прямая, непараллельная оси Oy. Углом между прямой и осью Ox называется тот угол между прямой и положительным направлением оси, который расположен в верхней полуплоскости (рисунок снизу, прямая обозначена красным цветом).
Если прямая параллельна оси или совпадает с нею, то угол считается равным нулю.
Для того, чтобы составить уравнение прямой, достаточно, чтобы были заданы точка , лежащая на этой прямой, и угол
наклона прямой к оси Ox.
Угловым коэффициентом прямой называется тангенс угла наклона этой прямой к оси Ox.
Уравнение прямой с угловым коэффициентом в случае нашей задачи составляется по формуле
, (1)
где — координаты точки
,
— угловой коэффициент прямой.
После подстановки указанных выше величин в формулу должно получиться уравнение вида
. (2)
Пример 1. Составить уравнение прямой с угловым коэффициентом, если угловой коэффициент и прямая проходит через точку
.
Решение. Используя формулу (1), получаем:
Получили уравнение вида (2).
Пример 2. Составить уравнение прямой с угловым коэффициентом, если угол наклона прямой и прямая проходит через точку
.
Решение. Находим угловой коэффициент, то есть тангенс угла наклона прямой:
Теперь, используя формулу (1), получаем:
Получили уравнение вида (2).
Решая задачи контрольных работ, надо стараться сделать проверку (для себя), даже если этого не требует условие задачи.
Как видно на примерах 1 и 2, из возможности проверки верного равенства следует возможность установить, принадлежит ли прямой, заданной уравнением с угловым коэффициентом, любая точка плоскости с заданными координатами. Проиллюстрируем это следующим примером.
Пример 3. Установить, принадлежит ли прямой, заданной уравнением с угловым коэффициентом точки
и
.
Решение. Подставляя координаты точки в уравнение прямой, получаем:
.
Получили верное равенство, следовательно точка принадлежит заданной прямой.
Подставляя координаты точки в уравнение прямой, получаем:
.
Получили неверное равенство, следовательно точка не принадлежит заданной прямой.
Прямая, проходящая через две данные точки
Применяя соотношение (1), легко решить следующую задачу: составить уравнение прямой, которая проходит через две данные точки и
.
В аналитической геометрии доказано, что угловой коэффициент искомой прямой можно вычислить по формуле:
. (3)
Нам остаётся лишь применять эту формулу.
Пример 4. Составить уравнение прямой с угловым коэффициентом, если она проходит через точки и
.
Решение. По формуле (3) находим угловой коэффициент:
.
Теперь, используя формулу (1), получаем:
Итак, получили уравнение вида (2).
Прямая, проходящая через данную точку параллельно данной прямой
Для того, чтобы составить уравнение прямой, проходящей через данную точку параллельно данной прямой, следует использовать следующее условие параллельности прямых.
Для параллельности прямых необходимо и достаточно, чтобы их угловые коэффициенты были равны.
Следовательно, эта задача просто обращается в задачу из примера 1. В формулу (1) следует подставить угловой коэффициент заданной прямой.
Пример 5. Составить уравнение прямой, проходящей через точку параллельно прямой, проведённой через две данные точки
и
.
Решение. Используя условия параллельности прямых. Требуется сначала найти угловой коэффициент прямой, проходящей через точки B и C, а затем воспользоваться этим угловым коэффициентом. Угловой коэффициент находим по формуле (3):
.
Теперь остаётся лишь составить уравнение прямой по угловому коэффициенту и точке, как в примере 1:
Итак, получили уравнение вида (2).
Аналогично решается задача, если задано, что прямая перпендикулярна данной прямой. Для её решения следует воспользоваться условием перпендикулярности прямых:
для перпендикулярности двух прямых необходимо и достаточно, чтобы их угловые коэффициенты были обратны по величине и противоположны по знаку.
Уравнение прямой с угловым коэффициентом
Пусть на плоскости, где имеется прямоугольная декартова система координат, прямая l проходит через точку М0 параллельно направляющему вектору а (рис. 96).
Если прямая l пересекает ось Ох (в точке N), то под углом прямой l с осью Ох будем понимать угол α, на который необходимо повернуть ось Ох вокруг точки N в направлении, обратном вращению часовой стрелки, чтобы ось Ох совпала с прямой l. (Имеется в виду угол, меньший 180°.)
Этот угол называют углом наклона прямой. Если прямая l параллельна оси Ох, то угол наклона принимается равным нулю (рис. 97).
Тангенс угла наклона прямой называется угловым коэффициентом прямой и обычно обозначается буквой k:
Если α = 0, то и k = 0; это означает, что прямая параллельна оси Ох и ее угловой коэффициент равен нулю.
Если α = 90°, то k = tg α не имеет смысла: это означает, что прямая, перпендикулярная оси Ох (т. е. параллельная оси Оу), не имеет углового коэффициента.
Угловой коэффициент прямой можно вычислить, если известны координаты двух каких-либо точек этой прямой. Пусть даны две точки прямой: M1(x1; у1) и M2(x2; у2) и пусть, например, 0 x1, у2 > у1 (рис. 98).
Тогда из прямоугольного треугольника M1РM2 находим
Приведем данное уравнение к виду
Задача 6. Составить уравнение прямой, проходящей через точку Q (-3; 4) и составляющей с положительным направлением оси Ох угол 30°.
Если α = 30°, то k = tg 30° = √ 3 /3. Подставив в уравнение (4) значения x1, y1 и k, получим