- Укажите условие перпендикулярности прямых произведение угловых коэффициентов равно
- Условие перпендикулярности прямых
- Перпендикулярные прямые, условие перпендикулярности прямых
- Перпендикулярные прямые – основные сведения
- Перпендикулярность прямых – условия перпендикулярности
- Укажите условие перпендикулярности прямых произведение угловых коэффициентов равно
- Условия параллельности и перпендикулярности двух прямых
Укажите условие перпендикулярности прямых произведение угловых коэффициентов равно
Условие перпендикулярности прямых заключается в том, что произведение их угловых коэффициентов равно –1
Решение: Угловые коэффициенты этих прямых , т.е. условие параллельности выполнено.
Пример 7. Составить уравнение прямой линии, проходящей через точку (1;2) параллельно прямой 2х-3у+1=0.
Решение. Угловой коэффициент k прямой линии, для которой нужно составить уравнение, равен угловому коэффициенту данной прямой в силу условия параллельности этих прямых. Таким образом,
получим искомое уравнение:
или, умножая на 3: 3y-6=2(x-1), или 3y-6=2x-2, откуда окончательно находим: 2x-3y+4=0
Пример 8. При каком значении k уравнение y=kx+1 определяет прямую, перпендикулярную к прямой у=2х-1?
Решение: Угловой коэффициент второй прямой k2=2. Условие перпендикулярности дает 2k=-1, откуда
Пример 9. Составить уравнение прямой линии, проходящей через точку (-1;1) перпендикулярно к прямой 3х-у+2=0.
Решение: Искомый угловой коэффициент обозначим через k1, угловой коэффициент данной прямой k2, как видно из ее уравнения, равен 3. Условие перпендикулярности k1k2=-1 нам дает: 3k1=-1, откуда . Таким образом, искомое уравнение
, или 3у-3=-х-1, и окончательно x+3y-2=0
Условие перпендикулярности прямых
I. Выясним условие перпендикулярности двух прямых y=k1x+b1 и y=k2x+b2.
Пусть прямые y=k1x+b1 и y=k2x+b2 образуют с положительным направлением оси Ox углы α1 и α2 соответственно.
Обозначим точки пересечения прямых с осью абсцисс через A и B, точку пересечения прямых — C.
Так как α2 — внешний угол при вершине B треугольника ABC, то
Отсюда угловой коэффициент второй прямой
условие перпендикулярности прямых:
прямые, заданные уравнениями y=k1x+b1 и y=k2x+b2 перпендикулярны, если их угловые коэффициенты обратны по абсолютной величине и противоположны по знаку:
и условие перпендикулярности прямых в этом случае имеет вид:
Перпендикулярные прямые, условие перпендикулярности прямых
В статье рассматривается вопрос о перпендикулярных прямых на плоскости и трехмерном пространстве. Определение перпендикулярных прямых и их обозначения с приведенными примерами подробно разберем. Рассмотрим условия применения необходимого и достаточного условия перпендикулярности двух прямых и подробно рассмотрим на примере.
Перпендикулярные прямые – основные сведения
Угол между пересекающимися прямыми в пространстве может быть прямым. Тогда говорят, что данные прямые перпендикулярные. Когда угол между скрещивающимися прямыми прямой, тогда прямые также являются перпендикулярными. Отсюда следует, что перпендикулярные прямые на плоскости пересекающиеся, а перпендикулярные прямые пространства могут быть пересекающимися и скрещивающимися.
То есть понятия «прямые a и b перпендикулярны» и «прямые b и a перпендикулярны» считаются равноправными. Отсюда и взялось понятие взаимно перпендикулярные прямые. Обобщив вышесказанное, рассмотрим определение.
Две прямые называют перпендикулярными, если угол при их пересечении дает 90 градусов.
Перпендикулярность прямых – условия перпендикулярности
Свойства перпендикулярности необходимо знать, так как большинство задач сводится к его проверке для последующего решения. Бывают случаи, когда о перпендикулярности идет речь еще в условии задания или когда необходимо пользоваться доказательством. Для того, чтобы доказать перпендикулярность достаточно, чтобы угол между прямыми был прямым.
Для того, чтобы определить их перпендикулярность при известных уравнениях прямоугольной системы координат, необходимо применить необходимое и достаточное условие перпендикулярности прямых. Рассмотрим формулировку.
Само доказательство основывается на определении направляющего вектора прямой и на определении перпендикулярности прямых.
Очевидно, что необходимое и достаточное условие выполнимо, значит, А В и А С перпендикулярны.
Ответ: прямые перпендикулярны.
Решение
Результат произведения не равен нулю, можно сделать вывод, что векторы не перпендикулярны, значит и прямые также не перпендикулярны.
Ответ: прямые не перпендикулярны.
Векторы перпендикулярны, так как произведение равно нулю. Необходимое и достаточное условие выполнено, значит прямые также перпендикулярны.
Ответ: прямые перпендикулярны.
Проверка перпендикулярности может проводится, исходя из других необходимых и достаточных условий перпендикулярности.
Необходимое и достаточное условие было выполнено.
Ответ: прямые перпендикулярны.
Ответ: заданные прямые перпендикулярны.
Имеется еще одно условие, используемое для определения перпендикулярности прямых на плоскости.
Для перпендикулярности прямых a и b на плоскости необходимым и достаточным условием является коллинеарность направляющего вектора одной из прямых с нормальным вектором второй прямой.
Условие применимо, когда есть возможность нахождения направляющего вектора одной прямой и координат нормального вектора другой. Иначе говоря, одна прямая задается каноническим или параметрическим уравнением, а другая общим уравнением прямой, уравнением в отрезках или уравнением прямой с угловым коэффициентом.
Укажите условие перпендикулярности прямых произведение угловых коэффициентов равно
Следует обратить внимание на то, что в числителе дроби из углового коэффициента второй прямой вычитается угловой коэффициент первой прямой.
Если уравнения прямой заданы в общем виде
угол между ними определяется по формуле
(7)
4. Условия параллельности двух прямых:
а) Если прямые заданы уравнениями (4) с угловым коэффициентом, то необходимое и достаточное условие их параллельности состоит в равенстве их угловых коэффициентов:
б) Для случая, когда прямые заданы уравнениями в общем виде (6), необходимое и достаточное условие их параллельности состоит в том, что коэффициенты при соответствующих текущих координатах в их уравнениях пропорциональны, т. е.
(9)
5. Условия перпендикулярности двух прямых:
а) В случае, когда прямые заданы уравнениями (4) с угловым коэффициентом, необходимое и достаточное условие их перпендикулярности заключается в том, что их угловые коэффициенты обратны по величине и противоположны по знаку, т. е.
(10)
Условия параллельности и перпендикулярности двух прямых
Условие параллельности прямых заключается в равенстве их угловых коэффициентов.
Условие перпендикулярности прямых заключается в том, что произведение их угловых коэффициентов равно –1
Решение: Угловые коэффициенты этих прямых , т.е. условие параллельности выполнено.
Пример 7. Составить уравнение прямой линии, проходящей через точку (1;2) параллельно прямой 2х-3у+1=0.
Решение. Угловой коэффициент k прямой линии, для которой нужно составить уравнение, равен угловому коэффициенту данной прямой в силу условия параллельности этих прямых. Таким образом,
получим искомое уравнение:
или, умножая на 3: 3y-6=2(x-1), или 3y-6=2x-2, откуда окончательно находим: 2x-3y+4=0
Пример 8. При каком значении k уравнение y=kx+1 определяет прямую, перпендикулярную к прямой у=2х-1?
Решение: Угловой коэффициент второй прямой k2=2. Условие перпендикулярности дает 2k=-1, откуда
Пример 9. Составить уравнение прямой линии, проходящей через точку (-1;1) перпендикулярно к прямой 3х-у+2=0.
Решение: Искомый угловой коэффициент обозначим через k1, угловой коэффициент данной прямой k2, как видно из ее уравнения, равен 3. Условие перпендикулярности k1k2=-1 нам дает: 3k1=-1, откуда . Таким образом, искомое уравнение
, или 3у-3=-х-1, и окончательно x+3y-2=0