Укажите размерность коэффициента теплоотдачи

pugovitsy raznotsvetnyj kruglyj 198727 1280x720 Вес тела

Вопрос 27. Что такое коэффициент теплоотдачи, его размерность, как его определить для выполнения расчетов?

dark fb.4725bc4eebdb65ca23e89e212ea8a0ea dark vk.71a586ff1b2903f7f61b0a284beb079f dark twitter.51e15b08a51bdf794f88684782916cc0 dark odnoklas.810a90026299a2be30475bf15c20af5b

caret left.c509a6ae019403bf80f96bff00cd87cd

caret right.6696d877b5de329b9afe170140b9f935

α – характеризует интенсивность конвективного теплообмена и зависит от скорости теплоносителя, теплоемкости, вязкости, от формы поверхности и тд.

image144[Вт/(м 2 ×град)].

Коэффициент теплоотдачи численно равен мощности теплового потока, передаваемому одному квадратному метру поверхности при разности температур между теплоносителем и поверхностью в 1°С.

Основной и наиболее трудной проблемой в расчётах процессов конвективной теплоотдачи является нахождение коэффициента теплоотдачи α. Современные методы описания процесса коэф. теплопроводности, основанные на теории пограничного слоя, позволяют получить теоретические (точные или приближённые) решения для некоторых достаточно простых ситуаций. В большинстве же встречающихся на практике случаев коэффициент теплоотдачи определяют экспериментальным путём. При этом как результаты теоретических решений, так и экспериментальные данные обрабатываются методами теории подобия и представляются обычно в следующем безразмерном виде:

Nu = f (Re, Pr) для вынужденной конвекции и

Nu = f (Gr Re,, Pr) — для свободной конвекции,

где image146— число Нуссельта,— безразмерный коэффициент теплоотдачи (L — характерный размер потока, λ— коэффициент теплопроводности); Re= image148 число Рейнольдса, характеризующее соотношение сил инерции и внутреннего трения в потоке (u — характерная скорость движения среды, υ — кинематический коэффициент вязкости);

Pr = image150 число Прандтля, определяющее соотношение интенсивностей термодинамических процессов (α – коэффициент температуропроводности);

Gr = image152 число Грассгофа, характеризующее соотношение архимедовых сил, сил инерции и внутреннего трения в потоке (g — ускорение свободного падения, β — термический коэффициент объёмного расширения).

Источник

Укажите размерность коэффициента теплоотдачи

Коэффициент теплопередачи является количественной расчет ной величиной и зависит от коэффициентов теплоотдачи, термического сопротивления стенки и загрязнений.

Для плоской стенки

Image1116, (9.28)

где Image1117– коэффициент теплоотдачи от горячего теплоносителя, Вт/(м град); Image1118– толщина теплопередающей стенки аппарата, м; Image1119— коэффициент теплопроводности материала стенки, Вт/(м град); Image1120— коэффициент теплоотдачи от стенки к холодному теплоносителю, Вт/(м град); Image1121– термическое сопротивление загрязнения стенки, м 2 град/Вт.

Если теплопроводность слоя загрязнения неизвестна, подсчитывают К для чистой стенки, а влияние загрязнения стенки учитывают при помощи коэффициента использования поверхности теплообмена j

Image1123, (9.29)

Коэффициенты теплоотдачи a определяются в основном из формул

Image1124или Image1125

где Nu – безразмерный критерий подобия Нуссельта; l – коэффициент теплопроводности теплоносителя (для которого определяется коэффициент теплоотдачи), Вт/(м град); l – определяющий геометрический размер, м; Image1128– эквивалентный диаметр, м.

Image1129(9.31)

где F – площадь поперечного сечения потока, м 2 ; П – смоченный периметр, м.

Критерий Нуссельта в зависимости от состояния и характера движения сред определяется по различным критериальным уравнениям.

Для подсчета a 1 и a 2 критериальное уравнение выбирается по справочникам так, чтобы оно возможно точно совпадало с условиями расчета.

Для устойчивого турбулентного режима движения жидкостей внутри труб ( Re > 10000) рекомендуется следующее критериальное уравнение:

Image1130, (9.32)

где Image1131– критерий Рейнольдса; Image1132– критерий Прандтля; Image1133— средняя скорость теплоносителя, м/с; l – определяющий геометрический размер, м; r – плотность теплоносителя, кг/м; m – вязкость теплоносителя, Н с/м 2 ; Image1134– массовая скорость теплоносителя, кг/(м 2 с); Image1128– эквивалентный диаметр, м; c – удельная теплоемкость теплоносителя, Дж/(кг град); l – теплопроводность теплоносителя, Вт/(м град).

Здесь за определяющую температуру принята Image1135, а за определяющий размер эквивалентный диаметр Image1128. Уравнение (8.32) применяется при Image1136, 100 > Pr > 0,6; для труб – при условии Image1137, где l – длина трубы, м; d – диаметр трубы, м.

Image1138, (9.33)

Для ламинарного движения ( Re

Image1139, (9.34)

где a – множитель (для горизонтальных труб d = 0,74; для вертикальных труб a= 0,85), Image1140– критерий Грасгофа; g = 9,81 ускорение свободного падения, м/с 2 ; r – плотность теплоносителя, кг/м ; b – коэффициент объемного расширения теплоносителя, град –1 ; Image1141– частный температурный напор, град.

Если теплоноситель перемещается в межтрубном пространстве (при наличии перегородок), то критерий Нуссельта определяется по уравнению

Image1142, (9.35)

Источник

Укажите размерность коэффициента теплоотдачи

1. Конвективный перенос теплоты

Конвекция возможна только в текучей среде, в которой перенос теплоты связан с переносом самой среды. Конвекция теплоты всегда сопровождается теплопроводностью, так как при движении жидкости или газа неизбежно происходит соприкосновение отдельных частиц, имеющих различные температуры. Совместный перенос теплоты путем конвекции и теплопроводности называют конвективным теплообменом.

Количество теплоты, переданное в процессе теплоотдачи, определяется по уравнению Ньютона-Рихмана:

для установившегося режима

image001, Вт; (1.1)

для неустановившегося режима

image002, Дж, (1.2)

Коэффициент теплоотдачи α – характеризует интенсивность теплообмена между поверхностью тела и окружающей средой. Коэффициент α показывает, какое количество тепла передается от единицы поверхности стенки к жидкости в единицу времени при разности температур между стенкой и жидкостью в 1 градус (К), image003.

Установлено, что коэффициент теплоотдачи зависит от многих факторов: вида и режима движения жидкости, ее физических свойств, размеров и формы стенки, шероховатости стенки. Определение α является основной задачей расчета теплообменных аппаратов. Обычно коэффициент теплоотдачи определяют из критериальных уравнений, полученных преобразованием дифференциальных уравнений гидродинамики и конвективного теплообмена методами теории подобия.

Согласно положений теории подобия конвективный теплообмен без изменения агрегатного состояния вещества в стационарных условиях может быть описан критериальным уравнением вида:

image004, (1.3)

Критерий Нуссельта, входящий в уравнение (1.3), является определяемым. При известном значении Nu коэффициент теплоотдачи может быть рассчитан по формуле:

image014. (1.4)

Для расчета числа критерия Нуссельта при вынужденном движении потока в прямых трубах или каналах можно рекомендовать следующие уравнения:

а) для ламинарного режима движения теплоносителя, image015:

image016, (1.5)

б) для переходного режима движения теплоносителя, image018:

Значение коэффициента С определяется из таблицы 1.1 в зависимости от величины критерия Рейнольдса.

Для приближенных расчетов можно пользоваться уравнением:

image020. (1.7)

Источник

Коэффициент теплоотдачи поверхность — воздух

vtorzhenieВ статье рассмотрен расчет мощности теплового потока от горизонтальных и вертикальных плоских поверхностей тела, помещенного в «безразмерное» воздушное пространство при принудительной и естественной конвекции с учетом радиационной составляющей теплоотдачи.

Зная коэффициент теплоотдачи на поверхности (α), разделяющей твердое тело и окружающее это тело воздушное пространство, очень просто определить мощность теплового потока (Q) по известной разности температур (Δt).

Q=α*A*Δt, Вт – мощность теплового потока от или к поверхности тела.

Основная сложность расчета заключается в определении коэффициента конвективной теплоотдачи (αк)! Автоматизировать в первую очередь решение этой трудоемкой задачи поможет Excel.

Нестабильность процесса естественной конвекции у поверхностей различной формы и расположения в пространстве породила большое разнообразие эмпирических формул для вычисления коэффициента конвективной теплоотдачи (αк). Неизбежные погрешности экспериментальных данных привели к тому, что результаты вычислений для одних и тех же поверхностей и условий по формулам разных авторов отличаются друг от друга на 20% и более.

После тщательного детального ознакомления с материалами современных западных изданий по теплообмену (список литературы – в конце статьи) были выбраны формулы, рекомендованные к применению большинством авторов, для использования в представленной далее программе в Excel.

Схемы теплообмена:

На представленных ниже рисунках показаны 8 вариантов схем, для которых программа может выполнить вычисления.

Розовый цвет пластин свидетельствует о том, что они горячее окружающего воздуха. Голубой цвет – пластины холоднее воздуха.

На схемах 1а и 1б воздух принудительно движется (вентилятор, ветер) вдоль поверхности пластины независимо от её ориентации в пространстве. На всех остальных схемах окружающий воздух находится в спокойном состоянии (помещение, полный штиль), а положение пластин сориентировано в пространстве.

skhemy 1 20

skhemy 2 20

skhemy 3 20

skhemy 4 20

Расчет в Excel:

koehfficient teplootdachi poverhnost vozduh raschet v excel 20

Формулы алгоритма программы:

t0=(tв+tп)/2

l0=L – для схем 1а и 1б

l0=(B*L)/(2*(B+L)) – для схем 2а, 2б, 3а, 3б, 4а, 4б

Re=w*l0

Gr=g*β*|tп tв|*l0 3 /ν 2

Ra=Gr*Pr

tablica formul 20

αк=Nu*λ/l0

αр=ε*0,00000005670367*((tп+273,15) 4 — (tв+273,15) 4 )/(tп-tв)) – при tв *) αр=0 – при tв>tп

α=αк+αр

q=α*(tп-tв)

Q=q*B*L

*) Нагрев поверхностей Солнцем или иными источниками теплового излучения программой игнорируется.

Вычисление теплофизических параметров воздуха и числа Нуссельта, как видно из вышеприведенных формул, являются ключевыми и самыми трудоемкими при определении конвективного коэффициента теплоотдачи.

Тестирование программы проводилось на примерах из книг, представленных в конце статьи. Отклонения результатов в основном не выходили за пределы ±5%.

Замечание:

В отечественной теплотехнической литературе для решения рассмотренных задач широко используются формулы второй половины прошлого века М.А. Михеева и В.П. Исаченко, которые в современной западной литературе не упоминаются. Беглый сравнительный анализ результатов расчетов по формулам разных авторов дал противоречивые и неоднозначные ответы. Если при принудительной конвекции результаты фактически идентичны, то при естественной конвекции отличаются порой на 30% и более, но иногда почти совпадают…

Литература:

Прошу уважающих труд автора скачать файл с программой после подписки на анонсы статей!

P. S. (01.11.2020)

Дополнение по естественной конвекции у вертикальной поверхности:

Если построить графики по вышеприведенным формулам Черчилля и Чу для числа Нуссельта при естественной конвекции у вертикальной изотермической поверхности (схемы 2а и 2б), то можно увидеть, что при Ra=10 9 кривые не совпадают!

Grafik NufRa 20

Еще один нюанс, который встретился только у Линхардов в [1]: «свойства флюида следует оценивать при t0=(tв+tп)/2 за одним исключением, если флюид – газ, то коэффициент объемного расширения β следует определять при t0=tв». Но сами авторы зависимостей Черчилль и Чу о таком условии ничего не пишут. По этому поводу в их статье [7], говорится, что «для больших температурных перепадов, когда физические свойства существенно различаются, Ид рекомендует оценивать физические свойства как средние значения температуры поверхности и объема, а Уайли дает более подробные теоретические указания для режима ламинарного пограничного слоя».

Grafik efdt 20

Правы Линхарды или множество других авторов, рассчитывающих все свойства флюидов при одном значении определяющей температуры t0=(tв+tп)/2? Однозначного ответа у меня нет.

(По материалам Обри Джаффера [8].)

Эмпирические уравнения для суммарного коэффициента теплоотдачи:

В инженерных расчетах для быстрого приближенного определения суммарного коэффициента теплоотдачи, учитывающего и конвекцию, и излучение на границе поверхность тела – среда, можно использовать более простые зависимости, приведенные в [9].

При расчете тепловых потерь через наружные поверхности тел, которые находятся в спокойном воздухе закрытых помещений, можно применить нижеприведенные формулы. Результаты вычислений по этим формулам достаточно близки к результатам более точных расчетов.

α=9,74+0,07*(tп-tв), Вт/(м2*°C) при tп On-line калькуляторы для расчетов коэффициентов конвективной теплоотдачи от плоских, цилиндрических и сферических поверхностей:

Инструменты представлены Группой исследований теплопередачи (HTRG). Группа была создана в 2014 году преподавателями Лаборатории теплотехники и жидкостей факультета машиностроения инженерной школы Сан-Карлоса (EESC) Университета Сан-Паулу (USP) для проведения передовых, качественных фундаментальных и прикладных исследований по вопросам теплопередачи для многофазных и однофазных систем.

Точность результатов вычислений не проверял.

Источник

Расчет коэффициентов теплоотдачи

Интенсивность теплоотдачи зависит от динамического вида течения, определяющего структуру пограничного слоя у поверхности теплообмена, который в свою очередь зависит от скорости потока. Увеличение скорости потока ведет к уменьшению пограничного слоя, повышает турбулентность и приводит к увеличению интенсивности теплоотдачи.

Теплоотдача так же зависит от характеристик теплоносителя. Высокая теплопроводность уменьшает термическое сопротивление пограничного слоя и увеличивает теплоотдачу.

Снижение вязкости жидкости уменьшает пограничный слой, что так же благоприятно влияет на теплообмен между поверхностью и потоком теплоносителя.

Уменьшение пограничного слоя происходит так же в случае повышения кинематической вязкости или увеличения плотности рабочей среды, что так же повышает теплоотдачу.

Так же интенсивность теплоотдачи зависит от теплоемкости жидкости. При повышении теплоемкости повышается и теплоотдача, поскольку жидкость с большей теплоемкостью способна переносить большее количество теплоты.

Дополнительными факторами, влияющими на теплоотдачу, являются форма поверхности теплоотдачи, химические реакции и фазовые переходы в теплоносителе.

Онлайн расчеты, выполняемые в данном разделе, включают в себя определение коэффициентов теплоотдачи для наиболее распространенных случаев: плоской поверхности, внутренней и наружной стенки трубы, а так же расчет коэффициента теплоотдачи наружной поверхности группы параллельных труб. Для расчета необходимо задать определяющие размеры поверхностей, их температуру, температуру теплоносителя, скорость потока а так же такие характеристики рабочей среды как динамическая вязкость, плотность, коэффициент теплопроводности и удельная теплоемкость.

Расчет коэффициента теплоотдачи плоской стенки

Вычислить коэффициент теплоотдачи плоской поверхности можно с помощью уравнения подобия:

Nul = 0,66×Rel 0,5 ×Pr 0,33 ; при ламинарном пограничном слое

Nul = 0,037×Rel 0,8 ×Pr 0,43 ; при турбулентном пограничном слое

Исходные данные:

КОЭФФИЦИЕНТ ТЕПЛООТДАЧИ ПЛОСКОЙ СТЕНКИ

Размер поверхности L, мм

Скорость потока, w, м/c

Динамическая вязкость, μ, Па*с

Плотность теплоносителя, ρ, кг/м 3

Теплопроводность, λ, Вт/(м* 0 C×сек)

Удельная теплоемкость, Сp, Дж/(кг* 0 C)

Источник

Комфорт
Adblock
detector