- Бином ньютона задачи с решением
- Биноминальное разложение с использованием треугольника Паскаля
- Бином Ньютона с использованием треугольника Паскаля
- Разложение бинома используя значения факториала
- Бином Ньютона с использованием обозначение факториала
- Нахождение определенного члена
- Нахождение (k + 1) члена
- Общее число подмножеств
- Полное число подмножеств
- Урок и презентация на тему: «Треугольник Паскаля. Бином Ньютона»
- Бином Ньютона – формула
- Коэффициенты бинома Ньютона, свойства биномиальных коэффициентов, треугольник Паскаля
- Доказательство формулы бинома Ньютона
- Бином Ньютона – применение при решении примеров и задач
- 11. Свойства биномиальных коэффициентов
- Бином Ньютона
- Биноминальное разложение с использованием треугольника Паскаля
- Бином Ньютона с использованием треугольника Паскаля
- Разложение бинома используя значения факториала
- Бином Ньютона с использованием обозначение факториала
- Нахождение определенного члена
- Нахождение (k + 1) члена
- Общее число подмножеств
- Полное число подмножеств
- Методическая разработка занятия по теме «Бином Ньютона»
- «IQ и EQ как основа успешного обучения»
Бином ньютона задачи с решением
Биноминальное разложение с использованием треугольника Паскаля
1. В каждом выражении на одно слагаемое больше, чем показатель степени n.
2. В каждом слагаемом сумма степеней равна n, т.е. степени, в которую возводится бином.
3. Степени начинаются со степени бинома n и уменьшаются к 0. Последний член не имеет множителя a. Первый член не имеет множителя b, т.е. степени b начинаются с 0 и увеличиваются до n.
4. Коэффициенты начинаются с 1 и увеличиваются на определенные значения до «половины пути», а потом уменьшаются на те же значения обратно к 1.
первой и последнее числа 1;
второе число равно 1 + 5, или 6;
третье число это 5 + 10, или 15;
четвертое число это 10 + 10, или 20;
пятое число это 10 + 5, или 15; и
шестое число это 5 + 1, или 6.
Мы можем обобщить наши результаты следующим образом.
Бином Ньютона с использованием треугольника Паскаля
Разложение бинома используя значения факториала
Бином Ньютона с использованием обозначение факториала
Для любого бинома (a + b) и любого натурального числа n,.
Бином Ньютона может быть доказан методом математической индукции. Она показывает почему называется биноминальным коэффициентом.
Нахождение определенного члена
Предположим, что мы хотим определить тот или иной член термин из выражения. Метод, который мы разработали, позволит нам найти этот член без вычисления всех строк треугольника Паскаля или всех предыдущих коэффициентов.
Обратите внимание, что в биноме Ньютона дает нам 1-й член,
дает нам 2-й член,
дает нам 3-й член и так далее. Это может быть обощено следующим образом.
Нахождение (k + 1) члена
(k + 1) член выражения (a + b) n есть .
Общее число подмножеств
Полное число подмножеств
Пример 8 Сеть ресторанов Венди предлагает следующую начинку для гамбургеров:
.
Сколько разных видов гамбургеров может предложить Венди, исключая размеры гамбургеров или их количество?
Решение Начинки на каждый гамбургер являются элементами подмножества множества всех возможных начинок, а пустое множество это просто гамбургер. Общее число возможных гамбургеров будет равно
. Таким образом, Венди может предложить 512 различных гамбургеров.
Урок и презентация на тему: «Треугольник Паскаля. Бином Ньютона»
Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.
Выпишем для наглядности все наши формулы:
$(a+b)^1=a+b$.
$(a+b)^2=a^2+2ab+b^2$.
$(a+b)^3=(a^2+2ab+b^2)(a+b)=a^3+3a^2b+3ab^2+b^3$.
$(a+b)^4=(a^3+3a^2b+3ab^2+b^3)(a+b)=a^4+4a^3b+6a^2b^2+4ab^3+b^4$.
Давайте проведем небольшой анализ полученных формул.
Обратить внимание: показатель степени в левой части равен сумме показателей степеней в правой части для любого слагаемого.
Для четвертой степени, очевидно, что слева показатель равен 4. В правой части показатель степени при первом слагаемом равен для а четырем, для b нулю и в сумме равен 4.
Ребята, посмотрите внимательно на коэффициенты в правой части. Что он вам напоминает? Правильно, коэффициенты образуют треугольник Паскаля.
Эти два замечательных свойства, замеченных выше, позволяют вычислять сумму двух одночленов в n-ой степени:
$(a+b)^n=C_n^ a^n+C_n^ a^b+C_n^ a^b^2+C_n^ a^b^3+. +C_n^ a^b^k+. +C_n^ab^+C_n^ b^n$.
Полученная нами формула называется «Бином Ньютона».
Коэффициенты, стоящие перед слагаемыми, это биномиальные коэффициенты.
Бином Ньютона – формула
В формуле сокращенного умножения a + b 2 = C 2 0 · a 2 + C 2 1 · a 1 · b + C 2 2 · b 2 = a 2 + 2 a b + b 2
просматривается формула бинома Ньютона, так как при n = 2 является его частным случаем.
Коэффициенты бинома Ньютона, свойства биномиальных коэффициентов, треугольник Паскаля
Представление биномиальных коэффициентов для различных n осуществляется при помощи таблицы, которая имеет название арифметического треугольника Паскаля. Общий вид таблицы:
Показатель степени | Биноминальные коэффициенты | ||||||||||
C 0 0 | |||||||||||
1 | C 1 0 | C 1 1 | |||||||||
2 | C 2 0 | C 2 1 | C 2 2 | ||||||||
3 | C 3 0 | C 3 1 | C 3 2 | C 3 3 | |||||||
⋮ | … | … | … | … | … | … | … | … | … | ||
n | C n 0 | C n 1 | … | … | … | … | … | C n n – 1 | C n n |
При натуральных n такой треугольник Паскаля состоит из значений коэффициентов бинома:
Показатель степени | Биноминальные коэффициенты | ||||||||||||||
1 | |||||||||||||||
1 | 1 | 1 | |||||||||||||
2 | 1 | 2 | 1 | ||||||||||||
3 | 1 | 3 | 3 | 1 | |||||||||||
4 | 1 | 4 | 6 | 4 | 1 | ||||||||||
5 | 1 | 5 | 10 | 10 | 5 | 1 | |||||||||
⋮ | … | … | … | … | … | … | … | … | … | … | … | … | … | ||
n | C n 0 | C n 1 | … | … | … | … | … | … | … | … | … | C n n – 1 | C n n |
Боковые стороны треугольника имеют значение единиц. Внутри располагаются числа, которые получаются при сложении двух чисел соседних сторон. Значения, которые выделены красным, получают как сумму четверки, а синим – шестерки. Правило применимо для всех внутренних чисел, которые входят в состав треугольника. Свойства коэффициентов объясняются при помощи бинома Ньютона.
Доказательство формулы бинома Ньютона
Имеются равенства, которые справедливы для коэффициентов бинома Ньютона:
Для этого необходимо применить метод математической индукции.
Для доказательства необходимо выполнить несколько пунктов:
Производим группировку слагаемых
C n – 1 1 + C n – 1 0 = C n 1 C n – 1 2 + C n – 1 1 = C n 2 ⋮ C n – 1 n – 1 + C n – 1 n – 2 = C n n – 1
Произведем подстановку в полученное равенство. Получим, что
Формула бинома доказана.
Бином Ньютона – применение при решении примеров и задач
Для полного понятия использования формулы рассмотрим примеры.
Решение
Ответ: a + b 5 = a 5 + 5 a 4 b + 10 a 3 b 2 + 10 a 2 b 3 + 5 a b 4 + b 5
Решение
Ответ: C n k = C 10 5 = 252
Ниже приведен пример, где используется бином для доказательства делимости выражения с заданным числом.
Решение
Необходимо представить выражение в виде 5 n = 4 + 1 n и воспользоваться биномом Ньютона. Тогда получим, что
11. Свойства биномиальных коэффициентов
Свойство 3 является следствием формулы бинома Ньютона:
. (9.1)
Поэтому сочетания еще иногда называют биномиальными коэффициентами.
Сумма биномиальных коэффициентов всех членов разложения равна 2n. Сумма биномиальных коэффициентов членов разложения, стоящих на нечетных местах, равна сумме биномиальных коэффициентов, стоящих на четных местах, и равно 2n–1.
Пример 9.1. Найти разложение степени бинома (2x–3)5.
Решение. Полагая a=2x, b=–3, получим
Пример 9.2. Пятый член разложения не зависит от x. Найти n.
Решение. Пятый член разложения T5 имеет следующий вид:
.
По условию T5 не зависит от x; это означает, что показатель степени при x равен нулю, т. е. (n–4)/3–4=0. Из последнего уравнения находим n=16.
Пример 9.3. Вычислить сумму
.
Решение. Согласно формуле бинома Ньютона, при любом x имеем равенство:
.
Полагая здесь x=1, получим
.
Итак, искомая сумма равна 35, т. е. 243.
9.1. Напишите разложение степени бинома
А) ; б)
; в)
.
Ответ: а) ,
Б) ,
В) .
9.2. Найдите пятый член разложения .
Ответ: .
9.3. Найдите два средних члена разложения .
Ответ: и
.
9.4. Найдите в биномиальном разложении член, не содержащий x.
Ответ: .
9.5. Найдите сумму .
Ответ: .
9.6. Сумма биномиальных коэффициентов разложения равна 64. Напишите член, не содержащий переменную x.
Ответ: n=6, .
Бином Ньютона
Биноминальное разложение с использованием треугольника Паскаля
1. В каждом выражении на одно слагаемое больше, чем показатель степени n.
2. В каждом слагаемом сумма степеней равна n, т.е. степени, в которую возводится бином.
3. Степени начинаются со степени бинома n и уменьшаются к 0. Последний член не имеет множителя a. Первый член не имеет множителя b, т.е. степени b начинаются с 0 и увеличиваются до n.
4. Коэффициенты начинаются с 1 и увеличиваются на определенные значения до «половины пути», а потом уменьшаются на те же значения обратно к 1.
первой и последнее числа 1;
второе число равно 1 + 5, или 6;
третье число это 5 + 10, или 15;
четвертое число это 10 + 10, или 20;
пятое число это 10 + 5, или 15; и
шестое число это 5 + 1, или 6.
Мы можем обобщить наши результаты следующим образом.
Бином Ньютона с использованием треугольника Паскаля
Разложение бинома используя значения факториала
Бином Ньютона с использованием обозначение факториала
Для любого бинома (a + b) и любого натурального числа n,.
Бином Ньютона может быть доказан методом математической индукции. Она показывает почему называется биноминальным коэффициентом.
Нахождение определенного члена
Предположим, что мы хотим определить тот или иной член термин из выражения. Метод, который мы разработали, позволит нам найти этот член без вычисления всех строк треугольника Паскаля или всех предыдущих коэффициентов.
Обратите внимание, что в биноме Ньютона дает нам 1-й член,
дает нам 2-й член,
дает нам 3-й член и так далее. Это может быть обощено следующим образом.
Нахождение (k + 1) члена
(k + 1) член выражения (a + b) n есть .
Общее число подмножеств
Полное число подмножеств
Пример 7 Сколько подмножеств имеет множество ?
Решение Начинки на каждый гамбургер являются элементами подмножества множества всех возможных начинок, а пустое множество это просто гамбургер. Общее число возможных гамбургеров будет равно
. Таким образом, Венди может предложить 512 различных гамбургеров.
Методическая разработка занятия по теме «Бином Ньютона»
Новые аудиокурсы повышения квалификации для педагогов
Слушайте учебный материал в удобное для Вас время в любом месте
откроется в новом окне
Выдаем Удостоверение установленного образца:
«IQ и EQ как основа успешного обучения»
Изучаемые вопросы 1. Понятие бинома Ньютона
2. Свойства бинома и биномиальных коэффициентов
3. Типовые задачи по теме «Бином Ньютона»
4. Задачи, сводящиеся к использованию формулы бинома Ньютона (нестандартные задачи по теме «Бином Ньютона»)
Понятие бинома Ньютона
Биномом Ньютона называют разложение вида:
Но, строго говоря, всю формулу нельзя назвать биномом, так как «бином» переводится как «двучлен». Кроме того, формула разложения была известна еще до Ньютона, Исаак Ньютон распространил это разложение на случай n n – дробного.
Цель изучения бинома Ньютона – упрощение вычислительных действий.
Компоненты формулы «бином Ньютона»:
правая часть формулы – разложение бинома;
– биномиальные коэффициенты, их можно получить с помощью треугольника Паскаля (пользуясь операцией сложения).
Практическая значимость треугольника Паскаля заключается в том, что с его помощью можно запросто восстанавливать по памяти не только известные формулы квадратов суммы и разности, но и формулы куба суммы (разности), четвертой степени и выше.
Например, четвертая строчка треугольника как раз наглядно демонстрирует биномиальные коэффициенты для бинома четвертой степени:
Альтернатива треугольнику Паскаля:
перемножить почленно четыре скобки:
;
вспомнить разложение бинома Ньютона четвертой степени:
где Т – член разложения; – порядковый номер члена разложения.
Свойства бинома и биномиальных коэффициентов
Число всех членов разложения на единицу больше показателя степени бинома, то есть равно
Сумма показателей степеней a и b каждого члена разложения равна показателю степени бинома, то есть n
Рассмотрим -й член разложения:
Сумма показателей степеней a и b :
Биномиальные коэффициенты членов разложения, равноотстоящих от концов разложения, равны между собой: (правило симметрии)
Сумма биномиальных коэффициентов всех членов разложения равна
Пусть , тогда:
левая часть равна ;
правая часть равна
Тогда:
Сумма биномиальных коэффициентов, стоящих на нечетных местах, равна сумме биномиальных коэффициентов, стоящих на четных местах и равна
Правило Паскаля:
Любой биномиальный коэффициент, начиная со второго, равен произведению предшествующего биномиального коэффициента и дроби
Типовые задачи по теме «Бином Ньютона»
К типовым (стандартным) заданиям по данной теме можно отнести задачи на вычисление, среди которых:
Найти член (номер члена) разложения бинома
Вывести бином по известным членам разложения (по известной сумме)
Вычислить сумму биномиальных коэффициентов разложения бинома
Продемонстрируем на примерах (их решение несложное, поэтому большинство предлагаем решить самостоятельно).
Разложить по формуле бином
ОБРАТИТЕ ВНИМАНИЕ на знакочередование!
Найти шестой член разложения
ОБРАТИТЕ ВНИМАНИЕ на знак!
Лучше начинать рассуждения со следующего:
Найдите два средних члена разложения
ОБРАТИТЕ ВНИМАНИЕ на то, что эти члены равноотстоят от конца, поэтому их биномиальные коэффициенты будут равны.
НЕ ЗАБУДЬТЕ в процессе решения проводить преобразования степеней с одинаковыми основаниями (то есть упрощать).
В биномиальном разложении найти член разложения, не содержащий х
Так как в разложении мы ищем член не содержащий х, то
Тогда
Ответ:
Задачи, сводящиеся к использованию формулы бинома Ньютона
(нестандартные задачи по теме «Бином Ньютона»)
К нестандартным заданиям по данной теме можно отнести такие, в которых нет явного намека на необходимость использования бинома. Однако в итоге, решение сводится к нему и выглядит очень интересным.
Доказать, что для любых и для любых
верно неравенство Бернулли:
Пусть
Так как , то
Переформулируем требование: Доказать, что , где
Так как , значит в разложении как минимум три члена разложения, тогда:
Это означает, что
Доказать, что
(Подсказка: используйте неравенство Бернулли)
Доказать, что при любом натуральном n число делится на 9
Начнем рассматривать бином в общем виде:
Тогда
Решить уравнение
Осуществим замену:
Тогда уравнение перепишем:
Применим формулу бинома к левой части уравнения:
В итоге
Ответ:
Дополнительные задания для самостоятельного выполнения
Найти номер члена разложения бинома , не содержащего х.
Найти пятый член разложения бинома .
Найти сумму биномиальных коэффициентов членов, стоящих на нечетных местах в разложении бинома , если биномиальный коэффициент третьего члена на 9 больше биномиального коэффициента второго члена.
Найти седьмой член разложения бинома , если биномиальный коэффициент третьего члена равен 36.
Сколько членов разложения бинома являются целыми числами?
Вычислить сумму .
Найти алгебраическую сумму коэффициентов многочлена относительно х, получаемого в разложении бинома .
Сумма нечетных биномиальных коэффициентов разложения равна 512. Найти слагаемое, не содержащее х.
При каких значениях х четвертое слагаемое разложения больше двух соседних с ним слагаемых?
В какую наибольшую степень следует возвести бином чтобы отношение четвертого слагаемого разложения к третьему было равно
?