Сухой остаток как рассчитать

Содержание
  1. Что такое сухой остаток в воде? Как его удалить?
  2. Что такое сухой остаток воды
  3. Классификация вод по содержанию сухого остатка
  4. Норма сухого остатка в питьевой воде
  5. На что влияет сухой остаток воды
  6. Определение в воде сухого остатка
  7. Методика определения сухого остатка воды в лабораторных условиях
  8. Как убрать сухой остаток из воды
  9. Как удалить сухой остаток из воды с помощью обратного осмоса
  10. Что важно знать про фильтры для сухого остатка в воде
  11. Сухой остаток при общей минерализации питьевой воды
  12. Общая минерализация питьевой воды
  13. Сухой остаток как рассчитать
  14. Оборудование
  15. Выполнение анализа
  16. Контрактное производство
  17. Косметических средств, БАД к пище, фасовка пищевой продукции.
  18. Методика определения сухого остатка в воде
  19. Общая минерализация сточной, природной и питьевой воды: нормы, измерение, определение по формуле
  20. Природные и сточные воды
  21. Общая минерализация воды
  22. Что это – общее солесодержание?
  23. Какие минералы содержатся?
  24. Типология пресных и соленых вод
  25. Влияние минеральной воды на человека
  26. Питьевая столовая
  27. Классификация воды в бальнеологии
  28. Низкий уровень минерализации
  29. Средний и высокий уровни
  30. Купание в высокоминерализованных источниках
  31. Влияние на антропную среду
  32. Инженерные сооружения и машины
  33. Ливневые коммуникации и водопроводы
  34. Методы определение минерализации воды
  35. Обзор методик по ГОСТу
  36. Что может ТДС?
  37. Расчет сухого остатка
  38. Единицы измерения и формула расчета
  39. Нормы по СанПиН
  40. Минеральная водоподготовка
  41. Очистка
  42. Дистилляция
  43. Электродиализ
  44. Обратный осмос
  45. Обогащение

Что такое сухой остаток в воде? Как его удалить?

Что такое сухой остаток воды

Классификация вод по содержанию сухого остатка

С учетом степени минерализованности (сухому остатку) воду делят на:

Норма сухого остатка в питьевой воде

Выбор и оценка качества источников для питьевого водоснабжения должны производиться в соответствии с условиями, определенными в ГОСТ Р 51232-98, СанПиН 2.1.4.1074-01, СанПиН 2.1.5.980-00. Сухой остаток воды должен быть меньше или равен нормам ПДК. Вода должна быть эпидемиологически безопасной, с безвредным биохимическим составом и обладать определенными органолептическими показателями.

ПДК сухого остатка в воде для питьевого водопотребления не должна превышать 1 г/л, что соответствует пресной воде. Верхний порог в 1,5 г/л может быть определен в некоторых случаях для отдельной системы с учетом санитарной обстановки в конкретном населенном пункте.suhoy ostatok v vode kak ochistit

На что влияет сухой остаток воды

Повышенное содержание сухого остатка в питьевой воде влияет на протекание биохимических реакций в клетках и может вызывать функциональные нарушения в работе органов и систем организма.

Содержание сухого остатка для питьевой воды, а именно Соли Mg усиливают перистальтику кишечника, меняют активность желез внутренней секреции желудка, могут вызвать расстройства пищеварения. Длительное питье воды с высокой концентрацией минералов в составе способствует развитию мочекаменной болезни, нарушению в работе желчевыводящих путей.
Показатели сухого остатка в воде также не должны быть ниже нормы. Низкая минерализация воды с показателями меньше 0,3 г/л может стать причиной дефицита Ca и Mg, следствием которого будет повышенная ломкость костей, артриты, нарушения работы опорно-двигательного аппарата.

Определение в воде сухого остатка

Существует несколько методов определения содержания сухого остатка в питьевой воде. Сухой остаток водного раствора в основном определяют методом гравиметрии. Пробу воды предварительно подвергают фильтрованию для отделения взвешенных примесей. Методика определения сухого остатка в воде установлена в ГОСТ 18164-72.

Методика определения сухого остатка воды в лабораторных условиях

Результат измерения сухого остатка воды высчитывают по отношению разности массы чашки с сухим остатком и массы пустой посуды к объему пробы водного раствора, взятого для анализа. MgCL2, CaCl2 гигроскопичны и подвергаются гидролизу во время проведения анализа, кристаллогидраты CaSO4, MgSO4 трудно отдают воду, что меняет результаты исследования в сторону завышенных показателей.

Как убрать сухой остаток из воды

Полученные в ходе химических анализов показатели имеют практическое применение при выборе метода достижения оптимального уровня минерализации питьевой воды. Процессы очистки воды от минерализации и сухого остатка отличаются процентом их извлечения:

Методики снижения превышений сухого остатка в воде с помощью обессоливания и опреснения разделяют на два класса:

Как удалить сухой остаток из воды с помощью обратного осмоса

К современным и эффективным методам очистки воды от сухого остатка относится обратный осмос. Суть методики состоит в пропускании воды сквозь полупроницаемые мембраны, которые способны задерживать практически все растворенные в ней соединения. Обратный осмос позволяет полностью убрать сухой остаток в воде.

Селективность набухающих мембранных элементов объясняется проявлением особых свойств жидкостей в капиллярах, которая снижается с увеличением концентрации раствора.

Установки обратного осмоса отличаются простотой оборудования, надежностью и экономичностью. Основными составляющими являются насосы и картриджи с полупроницаемыми мембранами. Они могут иметь промышленные масштабы для обслуживания предприятий, мест общепита, или устанавливаться в отдельном офисе или квартире под раковину. Если у вас превышение сухого остатка в воде пора задуматься о системах обратного осмоса бытового или промышленного назначения.

Мембраны изготавливают из полимеров, пористого стекла, графита, металлической фольги. По типу мембран обратноосмотические установки бывают с плоскими камерами, трубчатыми элементами, полыми волокнами, рулонные.

Что важно знать про фильтры для сухого остатка в воде

Мало знать, как убрать сухой остаток в воде, важно понимать принцип действия обратного осмоса и его слабые места. Мембраны чувствительны к хлорсодержащей органике, крупным взвешенным частицам. Для сохранности мембранного элемента устанавливается механический фильтр грубой очистки или узел предочистки воды перед мембранным элементом и фильтр на угольной основе для удаления органических соединений Cl. Количество взвешенных примесей в воде, поступающей в мембрану, не должно превышать 0,55 мг/л.

Источник

Сухой остаток при общей минерализации питьевой воды

obshaya mineralizacia pitevoy vody

Существует и еще более обобщенный показатель – сухой остаток (общая минерализация) воды, т.е. суммарное количество веществ, растворенных в единице объема воды. В принципе, сухой остаток (общая минерализация) определяется содержанием как неорганических (минеральных), так и органических веществ в воде. Однако, в норме концентрация органических соединений в воде пренебрежимо мала, поэтому с достаточной точностью величину сухого остатка (общей минерализации) можно считать равной сумме концентраций неорганических катионов и анионов.

Общая минерализация питьевой воды

obshaya mineralizacia pitevoy vody

Понятия «сухой остаток» и «общая минерализация» часто считают тождественными. Это с связано с тем, что такой интегральный показатель, как суммарное количество растворенных веществ, можно точно вычислить, лишь зная концентрации всех индивидуальных ингредиентов (ионов). Поскольку на практике это далеко не всегда возможно, широко практикуется определение сухого остатка, измеряемого гравиметрическим методом (взвешиванием) после упаривания воды.

Полученные значения, однако, часто оказываются гораздо более низкими, чем арифметическая сумма индивидуальных концентраций. Связано это с термическим разложением гидрокарбонат-ионов с выделением углекислого газа. Поэтому самые значительные расхождения межде величинами сухого остатка и вычисляемой общей минерализацией (TDS – total dissolved solids) наблюдаются для вод с высокой щелочностью, т.е. с высоким содержанием гидрокарбонат-ионов.

Разумеется, сухой остаток (общая минерализация) — гораздо менее информативный показатель, нежели данные полного химического анализа питьевой воды. В то же время, он позволяет получить обобщенное представление о качестве питьевой воды. В первую очередь, о ее органолептических свойствах:

На основании результатов многочисленных научных исследований, как эпидемиологических, так и экспериментальных, установлен оптимальный уровень сухого остатка (общей минерализации) питьевой воды — 200-500 мг/л. Вода, минерализованная на уровне до 1000 мг/л, считается качественной, пригодной для питья и приготовления пищи без ограничений. Вода с более высокой минерализацией относится к минеральным водам, употребление которых связано с определенными показаниями и ограничениями.

Для нормализации минерального состава питьевой воды, в том числе для получения питьевой воды с оптимальным значением сухого остатка (общей минерализации) можно использовать минеральные добавки серии «Северянка». Дополняя питьевую воду солями кальция, магния, калия, гидрокарбонат-ионами и другими жизненно важными ингредиентами, «Северянка» оптимизирует значение сухого остатка (общей минерализации) питьевой воды.

Источник

Сухой остаток как рассчитать

Сухой остаток характеризует содержание в воде нелетучих растворенных веществ (главным образом минеральных) и органических веществ, температура кипения которых превышает 105–110°С. Сухой остаток определяют гравиметрическим и расчетным методами. Перед определением сухого остатка пробу необходимо фильтровать либо отстаивать для отделения от взвешенных веществ.

Гравиметрический (весовой) метод основан на определении веса высушенного остатка, полученного после выпаривания пробы. При гравиметрическом определении сухого остатка сначала проводят выпаривание основной массы пробы, которая может составлять 250–500 мл. Далее оставшуюся часть пробы высушивают во взвешенной, доведенной до постоянной массы чашке (стакане, тигле) в сушильном шкафу в стандартных условиях в два этапа. На первом этапе высушивание проводят при температуре 103–105°С в течение 1–2 часов. При этом удаляются влага и все летучие органические вещества, однако сохраняется почти вся кристаллизационная вода солей – кристаллогидратов. На втором этапе высушивание проводят при температуре 178–182°С также в течение 1–2 часов. В этих условиях разлагаются кристаллогидраты, более полно испаряются и разлагаются органические вещества, разлагаются также некоторые соли – например, гидрокарбонаты до карбонатов и далее до оксидов (частично или полностью). Величину сухого остатка определяют по разности масс остатка пробы до и после высушивания, причем иногда выполняют промежуточное взвешивание – после высушивания при температуре 103–105°С. Взвешивание выполняют на аналитических весах с погрешностью не более ±1 мг (лучше ±0,1 мг). Перед взвешиванием тигель необходимо охладить до комнатной температуры.

Для определения сухого остатка поверхностных природных вод обычно достаточно высушивания при температуре 103–105°С. Высушивание при температуре 178–182°С применяется специалистами при детальном исследовании природных или сточных вод.

Величину сухого остатка можно также оценить расчетным методом. При этом надо суммировать полученные в результате анализов концентрации растворенных в воде минеральных солей, а также органических веществ (гидрокарбонат суммируется в количестве 50%*). Для питьевой и природной воды величина сухого остатка практически равна сумме массовых концентраций анионов (карбоната, гидрокарбоната, хлорида, сульфата) и катионов (кальция и магния, а также определяемых расчетным методом натрия и калия).

Величина сухого остатка для поверхностных вод водоемов хозяйственно-питьевого и культурно-бытового водопользования не должна превышать 1000 мг/л (в отдельных случаях допускается до 1500 мг/л).

А. Определение сухого остатка гравиметрическим методом

Оборудование

Весы аналитические с комплектом разновесов, мерный стакан, сушильный шкаф с термометром (103–105°С), фарфоровая чашечка (стакан) на 300 мл, щипцы.

Выполнение анализа

1. Подготовьте предварительно (можно это сделать накануне эксперимента) чистую фарфоровую чашечку или стакан:
— высушите ее в сушильном шкафу при температуре 103–105°С не менее часа;
— с помощью щипцов достаньте чашечку из сушильного шкафа, дайте ей остыть до комнатной температуры (2–3 часа).
2.
Определите массу пустой чашечки (М1) в г, взвесив ее на аналитических весах с точностью до ± 0,0001 г.

3. Мерным стаканом поместите в чашечку 100 мл анализируемой воды.
4. Поместите чашечку в сушильный шкаф при температуре 103–105°С на ночь для выпаривания.
5. С помощью щипцов достаньте чашечку из сушильного шкафа, дайте ей остыть до комнатной температуры в течение 2–3 часов.
6. Определите массу чашечки с остатком (М2) в г, взвесив ее на аналитических весах с точностью до ± 0,0001 г.
7. Рассчитайте величину сухого остатка (МСО) в мг/л по уравнению:

114

где: М2 и М1 – вес чашки с остатком после высушивания и пустой чашки соответственно, г;
V – объем воды, взятой для анализа, мл;
10 6 – коэффициент пересчета единиц измерения из г/мл в мг/л.

В. Определение сухого остатка расчетным методом

Величину сухого остатка в мг/л можно определить также расчетным методом, суммируя результаты определения массовых концентраций главных ионов, выраженные в мг/л (гидрокарбонат суммируют в количестве 50%).

115

Полученный результат округлите до целых чисел.
О расчете величины сухого остатка (общего солесодержания) в ммоль-эквивалентной форме см. п. 6.3.7.

* При «классическом» гравиметрическом определении сухого остатка при нагревании выпариваемой пробы протекает химическая реакция разложения гидрокарбонат-аниона:

113

в результате этой реакции теряется около 50% массы содержащегося в пробе гидрокарбонатаниона.

Источник

Контрактное производство

Косметических средств, БАД к пище, фасовка пищевой продукции.

raw

Методика определения сухого остатка в воде

Вода используется практически во всех производственных отраслях. Таким производителем, который использует при изготовлении своей продукции только качественную воду, является ООО «КоролевФарм». Компания занимается производством: биологически активных добавок (БАД) и косметики на контрактной основе.

Здесь вода используется как:

Также от воды зависят органолептические свойства выпускаемой на предприятии продукции: цвет, вкус, запах, стабильность. Например, вкус и внешний вид жидких форм БАД (каплей, сиропов и т. п.) зависит от содержащихся в используемой воде минеральных веществ. Так, слегка соленый вкус воде может придать присутствующий в ней хлорид натрия и т.д.

Качество воды должно удовлетворять требованиям санитарных норм. Контроль качества используемой воды на предприятии осуществляется в физико-химической лаборатории (ФХЛ), оснащенной необходимыми средствами измерений.

В ФХЛ контрактного производства «КоролёвФарм» сухой остаток в воде определяют согласно ГОСТу 18164-72 «Вода питьевая». Вода используются в производстве только после полного контроля на соответствие по показателям качества. В случае несоответствия по одному из показателей составляется протокол «несоответствия» и после проводятся корректирующие мероприятия.

В ООО «КоролевФарм» сотрудниками лаборатории определяется «сухой остаток» в воде несколькими методами: без добавления соды и с добавлением раствора соли.

Метод №1 без добавления соды

Этот метод заключается в выпаривании образца на водяной бане (рис.1).

110
111Манипуляции с чашечкой выполняйте с помощью щипцов! Не прикасайтесь руками к чашечке, т.к. это может вызвать изменение массы (внести ошибки) при последующем взвешивании.
112
suhoi1 fit
Рисунок 1. Выпаривание воды на водяной бане

Первоначально емкость, в которой будет выпариваться на водяной бане испытуемый образец, необходимо высушить до постоянной массы. Затем наливают 200-500 см3 отфильтрованной воды в фарфоровую емкость. После выпаривания последней пробы воды, чашку с содержимым высушивают при температуре 110 °С в термостате постоянной массы.

Количество сухого остатка (Х), мг/дм3, вычисляется по формуле:

suhoi2 fit

где m- значение массы емкости с сухим остатком, мг;

m1 – значение массы пустой емкости, мг;

При использовании данного метода результаты получаются несколько завышенными. Происходит это из-за высокой гигроскопичности и гидролиза хлорида магния и кальция, трудной передачи воды сульфатами магния и кальция. Этот недостаток устраняется добавлением чистого карбоната натрия к испытуемому образцу. В результате добавления хлориды магния и кальция перейдут в безводные карбонаты. Для того, чтобы удалить полностью кристаллизационную воду, полученный сухой остаток сушат при температуре 160-180°С до постоянной массы в термостате.

Метод № 2 с использованием раствора соды

Предварительно отфильтровывается вода с использованием бумажных фильтров. Высушенные до постоянной массы чашки ставятся на водяную баню, где выпаривают отобранные для испытания 200-500 см3 воды. После внесения последней порции воды пипеткой вносят 25 см3 1%-ного раствора натрия углекислого. Исходя из расчета, чтобы вес добавленной соды был приблизительно в два раза больше веса сухого остатка, который предполагается получить.

При необходимости дальнейшего выпаривания периодически перемешивают содержимое в чашке, чтобы разрушить образующуюся корку. Перемешивание осуществляют стеклянной палочкой. Затем дистиллированной водой обмывают палочку. Далее полученный сухой остаток с содой в чашке помещается в термостат и сушится при температуре 150 °С до образования постоянной массы. Время высушивания образца воды составляет от 2 до 5 часов.

Вычисляют разность по весу между емкостью с полученным сухим остатком и изначальным весом соды и чашки (в 1 см3 содового раствора содержится 10 мг Na2CO3). Эта разность определяет количество сухого остатка в испытуемом количестве воды.

Количество сухого остатка (Х), мг/дм3, вычисляют по формуле:

suhoi3 fit

где m – значение массы емкости с сухим остатком, мг;

С гигиенической точки зрения значение данного показателя состоит в том, что технически возможна корректировка используемой воды (установка и использование систем фильтрации) с понижением степени минерализации.

Сбалансированным считается вкус, когда общее солесодержание составляет до 600 мг/л. Питьевая вода должна быть минерализована не более чем на 1 г/л. При содержании в воде солей более 1 г/л она непригодна для питья, так как имеет специфический горько-соленый вкус. Кроме того, при постоянном употреблении такой воды происходят неблагоприятные физиологические изменения в организме: усиливается моторная и секреторная функции желудка и кишечника, увеличивается гидрофильность тканей, в жаркую погоду происходит перегрев организма. Такая вода способствует нарушению обмена веществ и может является одной из причин образования камней.

Получить безопасную и качественную продукцию можно только при использовании хорошо очищенной воды.

Для получения такой воды в ООО «КоролевФарм» ее подвергают многократной очистке с помощью фильтрационных систем с последующим контролем качества на все показатели.

Источник

Общая минерализация сточной, природной и питьевой воды: нормы, измерение, определение по формуле

Вода, текущая из крана в квартире, и вода из природных водоемов содержит растворенные соли. Минералы обнаруживаются в капле дождя и в скважинах, в сточных заводских водах и в ливневой канализации. Состав минеральных солей в природной воде, а также их количество зависит от геологических особенностей региона, но чаще всего в воде обнаруживаются неорганические соли – хлориды и сульфаты кальция, магния, калия и натрия, бикарбонаты.

1

Природные и сточные воды

mineralka2

По преобладающему катиону определяется группа вод:

Природные воды различного происхождения обычно имеют различный солевой состав и относятся соответственно к разным классам и группам.

Наименование вод Класс Группа
подземные сульфатный магниевая
речные гидрокарбонатный кальциевая
морские, океанические хлоридный натриевая

Общая минерализация воды

Что это – общее солесодержание?

Под общим солесодержанием или минерализацией понимают количество находящихся в воде растворенных веществ, часть которых представлена хлоридами, сульфатами, бикарбонатами, а часть – органикой. Растворенные в воде газы при расчете общего солесодержания не учитываются.

В зарубежных литературных источниках минерализацию или показатель общего количества растворенных частиц обозначают TDS (Total Dissolved Solids).

Принято считать, что 1 мг/дм 3 приблизительно соответствует 1 ppm.

Для расчета величины минерализации, как правило, суммируют содержания диссоциированных в воде ионов, но это лишь часть всех веществ, имеющихся в воде. Не учитывается «органика» летучей природы, которая тоже может находиться в растворе. Поэтому понятия «минерализация» и «сумма ионов» не являются синонимами. Но подавляющая часть веществ, растворенных в воде, находится в диссоциированном состоянии (главнейшие ионы). Следовательно, подсчет суммы ионов дает достаточно полное представление о минерализации воды.

Какие минералы содержатся?

В природных водах обнаруживаются две группы минеральных солей.

2 1

«Главные ионы» определяют в воде в первую очередь.

3 1

К минералам 2-й группы относятся:

4

Соли 2-й группы вкладываются несущественно в общую минерализацию природной воды, но они учитываются при оценке качества воды, так для каждого компонента установлен свой уровень ПДК.

В зависимости от преобладания тех или иных анионов из 1-й группы воды подразделяют на:

По преобладающему «главному» катиону (из 1-й группы) воды делятся на натриевые, кальциевые, калиевые, магниевые.

Типология пресных и соленых вод

Блестящий ученый В. И. Вернадский предложил понятный вариант классификации, выделив три типа вод по величине минерализации:

Большинство существующих пресных вод в основном гидрокарбонатные, а солоноватые и соленые –сульфатно-хлоридные. Повышение солености выше 35 г/дм 3 обусловлено присутствием хлоридов. Рассолы соляных озер, глубинных скважин, океанов и морей относятся к хлоридным натриевым водам.

Для градации подземных вод в гидрогеологии пользуются классификацией

А. М. Овчинникова, которая приведена в сводной таблице ниже.

5

Если этот рубеж преодолен, вода будет неприятно соленая или горько-соленая. Водоемы засушливых районов слегка солоноваты и отличаются повышенной минерализацией, а в некоторых минеральных озерах концентрация солей достигает 35 г/кг.

Солесодержание морской воды не превышает 50 г/кг. Превышение этого значения характерно для соленых озер и подземных вод из глубинных скважин, где содержание солей может достигать 400 г/кг.

Крупнейший специалист-гидрогеолог Е. В Пиннекер разделил рассолы по минерализации на 4 группы:

6

Влияние минеральной воды на человека

Питьевая столовая

Воды минеральные с содержанием солей до 1 г/дм 3 включительно относятся по ГОСТ Р 54316-2011 к столовым водам. В минеральной столовой воде из природных источников мало растворённых веществ, поэтому их воздействие на человеческий организм небольшое. Столовые воды не имеют ярко выраженного привкуса, лишены запаха. Воду с низкой минерализацией не возбраняется использовать для приготовления блюд и ежедневного питья.

Широко известны потребителю столовые минеральные воды «Ессентуки», Evian, «Боржоми», BonAqua, «Нарзан», «Святой источник», Aqua Minerale, «Архыз».

Минеральные столовые воды систематизируются по различным показателям.

7

По газовому наполнению выделяют минеральные столовые воды:

Классификация воды в бальнеологии

Минеральные воды подразделяются на шесть бальнеологических групп. Эту классификацию минеральных вод, используемую и в настоящее время, составили

В. В. Иванов и Г. А. Невраев в 1964 году.

Группа Наименование вод Особенности минеральных вод Лечебное применение
Группа А без «специфических» компонентов и свойств общая минерализация вод и рассолов – 1-35 мг/дм 3 и более; воды холодные и термальные для наружного применения и для лечебного питья
Группа Б углекислые содержание растворенного CO2 не менее 0,75 мг/дм 3 при заболеваниях ЖКТ, выделительной системы – питьевое лечение;

в виде ванн – для лечения сердечно-сосудистых патологий

Группа В сероводородные (сульфидные) свободный H2S присутствует в концентрации не ниже

10 мг/дм 3

для приготовления ванн
Группа Г железистые, мышьяковистые и с высокой концентрацией

алюминия, марганца, меди

слабо или

содержание железа не менее 20 мг/дм 3 ; разнообразный ионный состав.

для ванн и орошений;

питьевое лечение

Группа Д бромистые (Br), йодистые (I) и с высоким содержанием органических веществ бром – 25 мг/дм 3 и йод –5 мг/дм 3 при минерализации не более 12-13 мг/дм 3 при заболеваниях органов пищеварения, мочеполовой системы, при неврозах, начальных стадиях гипертонической болезни
Группа Е радоновые (радиоактивные) содержание радона более

50 эман/л (14 ед. Махе)

для лечения системы кровообращения, болезней ЖКТ, почек и мочевыводящих путей, нервной системы; проблем с гинекологией
Группа Ж кремнистые термы низкая минерализация;

много азота и кремнистой кислоты; теплые (горячие) воды

для лечебного питья и приготовления лечебных ванн

Низкий уровень минерализации

К слабоминерализованной воде относят воду, содержащую до 50-100 мг/дм 3 солей. В такой воде практически нет минералов, и на вкус она неприятна. При длительном употреблении воды с низким уровнем минерализации в организме сбивается обмен веществ, к примеру, в тканях уменьшается содержание хлоридов. Но в тоже время воды с невысокой минерализацией способствуют выведению из почек и мочевого пузыря слизи, песка и даже мелких камней.

Средний и высокий уровни

Большинство питьевых минеральных вод среднеминерализованы, в том числе и ценные углекислые воды.

Воды средней минерализации интенсивно воздействуют на ткани и органы человека, в том числе влияют на работу желчного пузыря и кислотообразование в желудке, на перистальтику кишечника.

Питье такой воды приводит к неблагоприятным отклонениям в здоровье:

Высокоминерализованные воды хороши для приготовления для ванн. Лечебные ванны из рассолов с минерализацией не более 150 г/дм 3 допускается использовать, не разбавляя пресной водой. Воды высокой минерализации находят лишь ограниченное питьевое применение – преимущественно для получения послабляющего эффекта.

Купание в высокоминерализованных источниках

Воды с высоким содержанием солей во время купания или принятия лечебных ванн химически воздействуют на организм, раздражая экстерорецепторы кожи. Внутрь организма также проникают некоторые ионы и микроэлементы, стимулируя интерорецепторы сосудов и внутренних органов. Действие продолжается и после прекращения контакта с высокоминерализованной водой, так как соль остается на коже в виде тончайшего слоя.

Сероводородная вода сочинского курорта «Мацеста» – пример ценного высокоминерализованного лечебного ресурса. Ванны с «огненной водой» Мацесты вызывают покраснение кожи. Кровеносные сосуды расширяются, в организме происходят гемодинамические сдвиги. Улучшение кровотока восстанавливает и нормализует структуру тканей органов и их систем, повышает их функциональную активность.

Другой известный источник высокоминерализованных вод находится на Ближнем Востоке. Воды Мертвого моря, бессточного соленого озера, отличаются самой высокой степенью солености в мире – от 300 до 350‰. Богатая «химия» воды представлена двумя десятками минералов и солей, среди которых хлорид калия, кальция, магния, натрия, бромиды. Обычная морская вода содержит 77% NaCl, но в Мертвом море концентрация хлористого натрия не превышает 25-30%, зато содержание солей магния (хлорида и бромида) достигает 50%. Магний и бром успокаивают расшатанную нервную систему, повышают стрессоустойчивость. Присутствие в лечебной ванне, созданной природой, солей калия и кальция нормализует кровяное давление.

Купание в высокоминерализованной воде при соблюдении рекомендаций врача приносит только пользу и омолаживает организм.

Влияние на антропную среду

Инженерные сооружения и машины

Высокая минерализация воды – настоящее бедствие для инженерных сооружений. Твердые грязно-белые частицы солей кальция и магния откладываются внутри труб, снижая скорость движения воды в коммуникациях. Накипь, нарастающая на нагревательных элементах бойлеров, снижает интенсивность теплообмена, способствует перегреву металлических поверхностей вплоть до поломки оборудования. Отложение солей на теплообменнике ведет к перерасходу топлива и потерям электроэнергии.

Ливневые коммуникации и водопроводы

Растворенные в воде соли кальция, магния, натрия и наличие углекислого газа, могут способствовать как образованию на трубах защитных пленок из нерастворимых карбонатов, тормозящих коррозию, так и появлению негомогенных пленок, ускоряющих разрушение водопровода. Сульфаты увеличивают электропроводность среды, активируя внутреннюю коррозию, а также косвенно способствую биологической коррозии. Хлориды встраиваются на место кислорода в защитную пленку и точечно воздействуют на металл. На металлических поверхностях коммуникаций образуются язвы, возникают течи.

Методы определение минерализации воды

ГОСТ Р 51232-98 отождествляет понятия «сухой остаток» и «общая минерализация». Для определения «сухого остатка» требуется выпарить 1 дм 3 воды и взвесить то, что осталось после этой процедуры, то есть все твердые вещества.

Параметр «сухой остаток» в лабораториях определяют двумя методами – гравиметрическим и кондуктометрическим. Гравиметрический метод предполагает предварительное выпаривание пробы воды, а затем высушивание и взвешивание осадка. Этот метод требует временных затрат, поэтому в лабораториях общую минерализацию чаще всего определяют помощью кондуктометра, измеряя прибором электропроводность воды. Портативный кондуктометр позволяет сделать быстрый вывод о минерализации воды в лабораторных и в походных условиях. Электропроводность воды напрямую зависит от концентрации растворенных солей, ионы которых переносят электрический заряд. Чем больше концентрация в жидкости положительно и отрицательно заряженных частиц, тем выше электропроводность.

Обзор методик по ГОСТу

Для определения сухого остатка по ГОСТ 18164-72 используют две варианта анализа:

Первый вариант предполагает выпаривание порции исследуемой воды на водяной бане, а затем высушивание фарфоровой чашки с осадком до постоянной массы (при t=110 ⁰С в термостате).

Второй вариант определения сухого остатка предполагает добавление к пробе во время выпаривания карбоната натрия (соды).

Гигроскопичные хлориды кальция и магния при повышении температуры подвергаются гидролизу, а кристаллогидраты CaSO4, MgSO4 тяжело отдают воду, поэтому результаты исследования завышаются. Чтобы получить достоверные данные, к пробе добавляют точно отмеренный объем 1%-го раствора карбоната натрия, по массе в два раза превышающий предполагаемый сухой остаток в пробе воды. В результате кристаллогидраты CaSO4, MgSO4 превращаются в безводные формы. Дальнейшие действия заключаются в выпаривании чашки с содой, чтобы извлечь воду из кристаллогидратов Na2SO4.

Что может ТДС?

Прибор TDS (Total Dissolved Solids) – это измеритель общего количества растворенных в воде частиц солей на 1 миллион частиц воды. По принципу действия TDS – обычный кондуктометр, измеряющий электропроводимость растворов.

Соли, растворяясь в воде, распадаются на ионы, которые электрически заряжены. Чем больше в растворе заряженных частиц, тем выше его способность проводить электрический ток.

Поэтому по электропроводимости раствора можно судить о концентрации солей в нем.

Этим прибором не получится проверить безопасность воды и сделать выводы о ее качестве. TDS-метр «не видит» вещества, растворенные в воде, если растворы этих веществ неэлектролиты. Именно поэтому датчик прибора не зафиксирует присутствие в воде токсичного хлороформа, но просигнализирует о непригодности безопасной минеральной воды проверенного бренда.

8

TDS-метр незаменим, если надо принять решение о целесообразности установки для очистки воды методом обратного осмоса. Прибором удобно замерить минерализацию поступающей воды и убедиться, что солей много (или мало).

А затем TDS-метр пригодится для определения качества работы системы очистки осмосом. Измерение параметра минерализации воды до фильтра и после него позволят сделать вывод о необходимости замены мембраны.

Расчет сухого остатка

Единицы измерения и формула расчета

9

Нормы по СанПиН

Минеральная водоподготовка

Повышенная минерализация воды способствует обрастанию трубопроводов и оборудования отложениями кальциевыми и магниевыми солями. Дорогая бытовая техника, контактирующая с высокоминерализованной водой, требует частой очистки, а без должного ухода выходит из строя. Ежедневное употребление воды, насыщенной солями, воздействует на человеческий организм не лучшим образом.

Очистка

В ходе водоподготовки минерализацию воды снижают:

10

Дистилляция

Суть метода заключается в испарении жидкости при нагревании и последующем ее конденсировании. Чистая вода закипает при 100 ⁰С, затем испаряется, а примеси с другой температурой кипения остаются на стенках испарителя.

Метод непопулярен из-за высокой энергоемкости процесса дистилляции и неизменного нарастания «шубы» из накипи на нагревательных элементах дистиллятора.

Электродиализ

Ионы металлов и кислотных остатков способны двигаться под действием электрического тока в направлении противоположно заряженных электродов. На этой способности основано обессоливание воды методом электродиализа в специальной емкости, разделенной двумя мембранами на три секции. В крайних секциях расположены электроды, которые притягивают к себе заряженные ионы. Катионы и анионы из межмембранного пространства проходят через мембраны к электродам и собираются там, а в межмембранном пространстве остается вода с пониженным уровнем минерализации.

Обратный осмос

Эффективный и экономически выгодный метод удаления солей из воды – обратный осмос. В основе обратноосмотического фильтра – полупроницаемая мембрана, задерживающая практически все примеси, но беспрепятственно пропускающая воду. Минерализованная вода подается на мембрану под давлением, которое создается специальным повысительным насосом. Вода на выходе из фильтра очищается от солей практически на 100 %, при этом неизбежно становится безвкусной.

Поэтому следующим этапом подготовки высокоочищенной воды становится насыщение ее необходимыми минералами.

Обогащение

Процесс обогащения воды минералами происходит в минерализаторе – картридже с насыщенным раствором солей. Минерализатор восстанавливает водно-солевой состав очищенной воды, улучшая ее вкус. Небольшие дозы ионов кальция, магния, натрия подаются в очищенную воду, приближая ее по уровню растворенных солей к природной.

Источник

Adblock
detector