Формула веса падающего тела физика

Содержание
  1. Вес тела
  2. Невесомость: что это такое
  3. Вес тела
  4. «Но погодите! Вес же измеряют в килограммах — я вот вешу 50»
  5. Снова невесомость
  6. Формулы веса для покоящегося и движущегося с ускорением тела. Решение задачи
  7. Что такое вес тела?
  8. Формула веса тела в покое
  9. Свободное падение и вес тела
  10. Решение задачи
  11. Движение тела с ускорением свободного падения
  12. теория по физике 🧲 кинематика
  13. Ускорение свободного падения
  14. Свободное падение
  15. Движение тела, брошенного вертикально вверх
  16. Уравнение координаты и скорости при свободном падении
  17. Построение чертежа
  18. Свободное падение на землю с некоторой высоты
  19. Тело подбросили от земли и поймали на некоторой высоте
  20. Тело подбросили от земли, на одной и той же высоте оно побывало дважды
  21. Свободное падение тел
  22. Ускорение свободного падения
  23. Свободное падение тела
  24. Движение тела, брошенного вертикально вверх
  25. Движение тела, брошенного под углом к горизонту
  26. Общие сведения
  27. Опыт Галилея
  28. Закон ускорения
  29. Решение задач

Вес тела

6038dbf5ef737936178714

Невесомость: что это такое

Невесомость — это состояние, при котором тело не давит на опору или подвес.

Само слово «невесомость» как бы подсказывает нам, что веса здесь быть не должно. При этом непонятно, что с ним тогда происходит. Давайте разбираться.

Вес тела

Вес — это сила, с которой тело действует на опору или подвес. Измеряется вес, как и любая другая сила, в Ньютонах.

«Но погодите! Вес же измеряют в килограммах — я вот вешу 50»

Это не совсем верно. В быту мы часто подменяем понятие «масса» понятием «вес» и говорим: вес чемодана — десять килограммам. В физике это два совершенно разных понятия, которые при этом взаимосвязаны.

6038dbf52230a955537539

Если у вас неподалеку есть весы — приглашаем в эксперимент! Один нюанс: наша затея сработает именно с механическими весами, но не с электронными. Поехали!

Шаг 1. Если встать на весы ровно и не двигаться — ваш вес будет высчитываться по формуле:

P = mg

g — ускорение свободного падения [м/с2]

На планете Земля g = 9,8 м/с2

Здесь может возникнуть два возражения:

Точка приложения силы. Эта формула и правда аналогична силе тяжести. Вес тела в состоянии покоя численно равен массе тела, разница состоит лишь в точке приложения силы.

Сила тяжести — это сила, с которой Земля действует на тело, а вес — сила, с которой тело действует на опору. Это значит, что у них будут разные точки приложения: у силы тяжести к центру масс тела, а у веса — к опоре.

6038dbf5b4e62290890850

Весы измеряют силу. Весы работают таким образом, что измеряют вес тела — силу, с которой мы на них действуем, а показывают — массу. Можно сделать вывод, что весы — это динамометр (прибор, измеряющий силу).

Шаг 2. Теперь пошалим и резко встанем на носочки! Стрелка резко отклонилась влево, а потом вернулась на место. Вы придали себе ускорение, направленное вверх — в то время, как ускорение свободного падения всегда направлено к центру Земли (вниз).

6038dbf52230a955537539

Теперь вес тела вычисляем по формуле:

P = m (g-a)

g — ускорение свободного падения [м/с2]

a — ваше ускорение [м/с2]

На планете Земля g = 9,8 м/с2

Шаг 3. Последняя часть эксперимента — резко опуститься на пятки. Теперь вы сильнее давите на весы, потому что придали ускорение, направленное вниз. Стрелка весов отклонится вправо и вернется на место, когда вы придете в состояние покоя.

6038dbf52230a955537539

Формула веса примет вид:

P = m (g+a)

g — ускорение свободного падения [м/с2]

a — ваше ускорение [м/с2]

На планете Земля g = 9,8 м/с2

Кстати, если ровно стоять на весах, но взвешиваться в лифте — все будет работать наоборот. Если лифт едет вверх, то он как будто давит весами на человека, стоящего на них, а это как раз ситуация с увеличением веса. А если вниз — весы как будто бы от вас «убегают», чтобы показать меньшее значение.

Этот случай мы можем описать через 2 закон Ньютона. Возьмем лифт, который едет вниз. Обозначим силы на рисунке.

N – сила реакции опоры [Н];

mg – сила тяжести [Н];

a – ускорение, с которым движется лифт [м/с2].

6038dbf5c77be418457676

При проецировании на ось y, направленную вниз, мы получаем:

А теперь нам понадобится третий закон Ньютона — по нему сила реакции опоры равна весу тела:

Снова невесомость

Ну что, с весом разобрались. А теперь давайте сделаем так, чтобы его не стало и получилась та самая невесомость.

Чтобы привыкнуть к ощущению невесомости в космосе, космонавты тренируется в специальных самолетах-лабораториях:

6038dbf5dbc85916892214

Он взлетает и начинает просто падать, чтобы ускорение самолета было равно ускорению свободного падения. В этот момент, в формуле веса из g вычитается равное ему значение и получается 0:

Вот мы и в невесомости!

Если они летят вокруг Земли, то да. Как писал Дуглас Адамс в книге «Автоспом по галактике»: «Летать просто. Нужно просто промахнуться мимо Земли».

Когда космический корабль обращается вокруг Земли, он просто пытается на нее упасть, но промахивается. Такой процесс происходит, когда корабль движется с первой космической скоростью, равной 7.9 км/с. Это та скорость, с которой корабль становится искусственным спутником Земли.

Кстати, есть еще вторая и третья космические скорости. Вторая космическая скорость — это скорость, которая нужна, чтобы корабль стал искусственным спутником Солнца, а третья — чтобы вылетел за пределы солнечной системы. Такие дела 🙂

Источник

Формулы веса для покоящегося и движущегося с ускорением тела. Решение задачи

3040767

С древних времен люди замечали, что всякий брошенный вверх предмет неминуемо падает вниз, на землю. Это явление в современной физике описывается в рамках классической механики с привлечением понятия гравитационного притяжения нашей планетой всех окружающих тел. С силой гравитации тесно связан вес тела. В данной статье рассмотрим эту физическую величину и приведем формулы веса.

Что такое вес тела?

Примером действия веса является ситуация, когда мы становимся на весы. Хотя последние откалиброваны таким образом, что они показывают массу в килограммах, в действительности же измеряется именно вес, с которым наше тело давит на весы.

3040763

Формула веса тела в покое

В середине XVII века, наблюдая за поведением небесных тел (планет, естественных спутников, комет) и используя экспериментальные данные, Исаак Ньютон сформулировал закон всемирного тяготения. Благодаря этому закону появилась возможность численного расчета гравитационных сил, с которыми взаимодействуют тела в природе. Согласно этому закону, сила тяжести Ft на поверхности любой планеты может быть рассчитана по формуле:

Когда любое тело массой m находится на поверхности, например стакан с водой стоит на столе, то на него действуют две силы:

Так как тело никуда не движется и покоится, то обе силы противоположны по направлению и равны по модулю, то есть:

Согласно определению веса, формула для него принимает вид:

Именно с силой Ft стакан с водой давит на стол.

Свободное падение и вес тела

Проведем следующий мысленный эксперимент: предположим, что в деревянный ящик поместили камень некоторой массы m, затем бросили этот ящик с высоты. Какой вес будет иметь камень в процессе свободного падения?

Для ответа на этот вопрос следует записать основное уравнение динамики. В данном случае оно имеет вид:

То есть сила реакции опоры равна нулю. Этот вывод уравнения движения говорит о том, что камень во время свободного падения давить на дно ящика не будет, то есть его вес будет равным нулю. Такая ситуация наблюдается на космических станциях, на которых центробежная сила и сила тяжести уравновешивают друг друга.

3040771

Для движения с произвольным ускорением вниз формула веса примет вид:

Решение задачи

Для начала запишем второй закон Ньютона для рассматриваемой задачи. Имеем:

3040781

Подставляя данные, получаем, что вес космонавта во время старта ракеты будет равен 3486,7 Н. Если бы в процессе старта космонавт встал на весы, то они бы показали значение его массы 355,4 кг.

Источник

Движение тела с ускорением свободного падения

теория по физике 🧲 кинематика

Свободное падение — это движение тела только под действием силы тяжести.

В действительности при падении на тело действует не только сила тяжести, но и сила сопротивления воздуха. Но в ряде задач сопротивлением воздуха можно пренебречь. Воздух не оказывает значимого сопротивления падающему мячу или тяжелому грузу. Но падение пера или листа бумаги можно рассматривать только с учетом двух сил: небольшая масса тела в сочетании с большой площадью его поверхности препятствует свободному падению вниз.

В вакууме все тела падают с одинаковым ускорением, так как в нем отсутствует среда, которая могла бы дать сопротивление. Так, брошенные в условиях вакуума с одинаковой высоты перо и молоток приземлятся в одно и то же время!

Ускорение свободного падения

Свободное падение

Свободное падение — частный случай равноускоренного прямолинейного движения. Если тело отпустить с некоторой высоты, оно будет падать с ускорением свободного падения без начальной скорости. Тогда его кинематические величины можно определить по следующим формулам:

v — скорость, g — ускорение свободного падения, t — время, в течение которого падало тело

Пример №1. Тело упало без начальной скорости с некоторой высоты. Найти его скорость в конечный момент времени t, равный 3 с.

Подставляем данные в формулу и вычисляем:

Перемещение при свободном падении тела равно высоте, с которой оно начало падать. Высота обозначается буквой h.

Внимание! Перемещение равно высоте, с которой падало тело, только в том случае, если t — полное время падения.

Если известна скорость падения тела в момент времени t, перемещение (высота) определяется по следующей формуле.

word image 187

Если скорость тела в момент времени t неизвестна, но для нахождения перемещения (высоты) используется формула:

word image 188

Если неизвестно время, в течение которого падало тело, но известна его конечная скорость, перемещение (высота) вычисляется по формуле:

word image 189

Пример №2. Тело упало с высоты 5 м. Найти его скорость в конечный момент времени.

Так как нам известна только высота, и найти нужно скорость, используем для вычислений последнюю формулу. Выразим из нее скорость:

word image 190

Формула определения перемещения тела в n-ную секунду свободного падения:

word image 191

s(n) — перемещение за секунду n.

Пример №3. Определить перемещение свободно падающего тела за 3-ую секунду движения.

word image 192

Движение тела, брошенного вертикально вверх

Движение тела, брошенного вертикально вверх, описывается в два этапа

Два этапа движения тела, брошенного вертикально вверх Этап №1 — равнозамедленное движение. Тело поднимается вверх на некоторую высоту h за время t с начальной скоростью v0 и на мгновение останавливается в верхней точке, достигнув скорости v = 0 м/с. На этом участке пути векторы скорости и ускорения свободного падения направлены во взаимно противоположных направлениях ( v ↑↓ g ). Этап №2 — равноускоренное движение. Когда тело достигает верхней точки, и его скорость равна 0, начинается свободное падение с начальной скоростью до тех пор, пока тело не упадет или не будет поймано на некоторой высоте. На этом участке пути векторы скорости и ускорения свободного падения направлены в одну сторону ( v ↑↑ g ). Формулы для расчета параметров движения тела, брошенного вертикально вверх Перемещение тела, брошенного вертикально вверх, определяется по формуле:

word image 193

Если известна скорость в момент времени t, для определения перемещения используется следующая формула:

word image 194

Если время движения неизвестно, для определения перемещения используется следующая формула:

Screenshot 1 1

Формула определения скорости:

word image 195

Какой знак выбрать — «+» или «–» — вам помогут правила:

Обычно тело бросают вертикально вверх с некоторой высоты. Поэтому если тело упадет на землю, высота падения будет больше высоты подъема (h2 > h1). По этой же причине время второго этапов движения тоже будет больше (t2 > t1). Если бы тело приземлилось на той же высоте, то начальная скорость движения на 1 этапе была бы равно конечной скорости движения на втором этапе. Но так как точка приземления лежит ниже высоты броска, модуль конечной скорости 2 этапа будет выше модуля начальной скорости, с которой тело было брошено вверх (v2 > v01).

Пример №4. Тело подкинули вверх на некотором расстоянии 2 м от земли, придав начальную скорость 10 м/с. Найти высоту тела относительно земли в момент, когда оно достигнет верхней точки движения.

Конечная скорость в верхней точке равна 0 м/с. Но неизвестно время. Поэтому для вычисления перемещения тела с точки броска до верхней точки найдем по этой формуле:

word image 196

Согласно условию задачи, тело бросили на высоте 2 м от земли. Чтобы найти высоту, на которую поднялось тело относительно земли, нужно сложить эту высоту и найденное перемещение: 5 + 2 = 7 (м).

Уравнение координаты и скорости при свободном падении

Уравнение координаты при свободном падении позволяет вычислять кинематические параметры движения даже в случае, если оно меняет свое направление. Так как при вертикальном движении тело меняет свое положение лишь относительно оси ОУ, уравнение координаты при свободном падении принимает вид :

word image 197

Уравнение скорости при свободном падении:

Построение чертежа

Решать задачи на нахождение кинематических параметров движения тела, брошенного вертикально вверх, проще, если выполнить чертеж. Строится он в 3 шага.

Свободное падение на землю с некоторой высоты

word image 199

Тело подбросили от земли и поймали на некоторой высоте

word image 200Уравнение скорости:

word image 201

Тело подбросили от земли, на одной и той же высоте оно побывало дважды

word image 202

Интервал времени между моментами прохождения высоты h:

Уравнение координаты для первого прохождения h:

word image 203

Уравнение координаты для второго прохождения h:

word image 204

Важно! Для определения знаков проекций скорости и ускорения нужно сравнивать направления их векторов с направлением оси ОУ.

Пример №5. Тело падает из состояния покоя с высоты 50 м. На какой высоте окажется тело через 3 с падения?

Из условия задачи начальная скорость равна 0, а начальная координата — 50.

word image 205

Через 3 с после падения тело окажется на высоте 5 м.

Алгоритм решения

Решение

Записываем исходные данные:

word image 297

Перемещение (высота) свободно падающего тела, определяется по формуле:

word image 298

В скалярном виде эта формула примет вид :

word image 299

Учтем, что начальная скорость равна нулю, а ускорение свободного падения противоположно направлено оси ОУ:

word image 300

Относительно оси ОУ груз совершил отрицательное перемещение. Но высота — величина положительная. Поэтому она будет равна модулю перемещения:

word image 301

Вычисляем высоту, подставив известные данные:

word image 302

pазбирался: Алиса Никитина | обсудить разбор | оценить

Алгоритм решения

Решение

Записываем исходные данные:

1 2

Записываем формулу для определения скорости тела в векторном виде:

Теперь запишем эту формулу в скалярном виде. Учтем, что согласно чертежу, вектор скорости сонаправлен с осью ОУ, а вектор ускорения свободного падения направлен в противоположную сторону:

Подставим известные данные и вычислим скорость:

pазбирался: Алиса Никитина | обсудить разбор | оценить

Источник

Свободное падение тел

Ускорение свободного падения

Проводя свои знаменитые опыты на Пизанской башне Галилео Галилей выяснил, что все тела, независимо от их массы, падают на Землю одинаково. То есть, для всех тел ускорение свободного падения одинаково. По легенде, ученый тогда сбрасывал с башни шары разной массы.

Ускорение свободного падения

Свободное падение тела

Рассмотрим простой пример свободного падения. Пусть некоторое тело падает с высоты h с нулевой начальной скоростью. Допустим мы подняли рояль на высоту h и спокойно отпустили его.

Так как начальна скорость равна нулю, перепишем:

Отсюда находится выражение для времени падения тела с высоты h :

Движение тела, брошенного вертикально вверх

Аналогично можно рассмотреть движение тела, брошенного вертикально вверх с определенной начальной скоростью. Например, мы бросаем вверх мячик.

Пусть ось координат направлена вертикально вверх из точки бросания тела. На сей раз тело движется равнозамедленно, теряя скорость. В наивысшей точки скорость тела равна нулю. Применяя формулы кинематики, можно записать:

Максимальная высота подъема тела, брошенного вертикально:

screenshot 5

Третий график является продолжением первого. Падающее тело отскакивает от поверхности и его скорость резко меняет знак на противоположный. Дальнейшее движение тела можно рассматривать по второму графику.

Движение тела, брошенного под углом к горизонту

С задачей о свободном падении тела тесно связана задача о движении тела, брошенного под определенным углом к горизонту. Так, движение по параболической траектории можно представить как сумму двух независимых движений относительно вертикальной и горизонтальной осей.

screenshot 1

Условия для движения вдоль оси О Х :

Условия для движения вдоль оси O Y :

Приведем формулы для движения тела, брошенного под углом к горизонту.

Дальность полета тела:

Максимальная высота подъема:

Источник

Общие сведения

Основоположником создания учения о движении стал Аристотель. Он утверждал, что скорость падения тела зависит от его веса. Значит, тяжёлый предмет сможет долететь до Земли быстрее, чем лёгкий. Если же на объект не будут воздействовать какие-либо силы, его движение невозможно.

Но Галилео Галилей, известный итальянский изобретатель и физик, изучая падение различных предметов и их инерцию, смог опровергнуть догадки Аристотеля. Результаты его исследований были революционными в науке. При этом даже была выпущена книга «Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящихся к механике и местному движению», в которой были изложены основные размышления Галилея.

За дату рождения кинематики как науки можно принять 20 января 1700 года. В это время проходило заседание Академии наук, на котором Пьер Вариньона не только дал определения понятиям скорость, ускорение, но и описал их в дифференциальном виде. Уже после Ампер использовал для изучения процессов вариационное исчисление. Наглядные опыты провёл Лейбниц, а потом. профессор МГУ Н. А. Любимов смог продемонстрировать появление невесомости при свободном падении.

Под невесомостью понимают состояние тела, при котором силы взаимодействия с опорой, существующие из-за гравитационного притяжения, не оказывают никакого влияния. Такое положение имеет место, когда воздействующие на тело внешние силы можно охарактеризовать массовостью, например, тяготения.

В этом случае силы поля сообщают всем частицам предмета в любом из его положений равные по модулю и направлению ускорения, либо при движении возникают одинаковые по модулю скорости всех частиц тела. Например, поступательное движение. Состояние невесомости особо ярко проявляется в начальный момент при падении тела в атмосфере. Это связано с тем, что сопротивление воздуха ещё невелико.

Таким образом, для существования свободного падения нужно выполнение как минимум двух условий:

Что интересно, движение вверх тоже считается свободным падением, несмотря на обратное интуитивное восприятие, поэтому траектория движения может иметь форму как участка параболы, так и отрезка прямой. Например, камень, брошенный с небольшой высоты или поверхности под любым углом.

Опыт Галилея

Падение относится к реальному движению. Любое взаимодействие с Землёй приводит к изменению скорости из-за чего возникает ускорение. В 1553 году итальянец Джованни Бенедетти заявил, что 2 тела с разной массой, но одинаковой формы, брошенные в одной среде за одинаковое время пролетят равные расстояния. Это утверждение нуждалось в доказательстве, так как противоречило общепринятому на тот момент времени пониманию процессов. В частности, высказываниям Аристотеля.

Одним из экспериментаторов стал Галилей. Для проведения опыта учёному понадобилось:

Существует мнение, что вместо шара учёный использовал мушкетную пулю. Эксперимент заключался в следующем. Подняв 2 предмета на Пизанскую башню, Галилей сбросил их одновременно. Наблюдающие люди воочию смогли убедиться, что 2 тела упали на землю одновременно. Когда же один из учеников Аристотеля упрекнул итальянца, что на такой малой высоте невозможно оценить достоверно разницу, экспериментатор ответил: «Проделайте опыт самостоятельно, вы найдёте, что более тяжёлый предмет опередит тот, что легче на 2 пальца, поэтому, когда первый упадёт на землю, то второй будет от него на расстоянии толщины двух пальцев».

В своих работах Галилей рассуждал, что если связать верёвкой 2 тела разной тяжести, то с большим весом, по мнению Аристотеля, предмет будет лететь быстрее. Причём лёгкий объект начнёт замедлять падение тяжёлого. Но так как система в целом тяжелее, чем отдельно взятые тела, падать она должна быстрее самого тяжёлого тела. Другими словами, возникает противоречие, значит, предположение о влиянии веса на скорость падения неверно.

Сегодня эксперимент, подтверждающий доводы Галилея, может провести самостоятельно, пожалуй, каждый интересующийся. Такой опыт часто демонстрируют в средних классах общеобразовательной школы. Для этого нужно взять 2 трубки, длиной более метра и поместить в них 2 шарика разной массы. Затем создать внутри вакуум и одновременно их перевернуть. Если все условия соблюдены верно, то 2 тела опустятся на дно ёмкостей одновременно.

Если же опыт повторить не в вакууме, на шары будет действовать сила сопротивления, поэтому время падения уже не будет совпадать. Причём зависеть оно будет от формы предмета и его плотности.

Закон ускорения

Формула для свободного падения была выведена из выражения, определяющего силу тяжести: F = m * g. В соответствии с законом, падение предметов выполняется с одним и тем же ускорением вне зависимости от массы тела. По сути, это частный случай равноускоренного движения, обусловленное силой тяжести.

Для количественного анализа нужно ввести систему координат, взяв начало у поверхности Земли. Тогда можно рассмотреть падение тела массой m с высоты y0. Причём вращением планеты и сопротивлением воздушной среды нужно пренебречь.

Из полученных формул становится понятно, почему свободное падение не зависит от массы тела. При этом если начальная скорость будет равна нулю, то есть при падении предмету не сообщается импульс, текущее движение пропорционально времени, а пройденный путь определяется его квадратом.

Значения силы тяжести также зависит от строения земной коры и содержащихся в недрах полезных ископаемых. С учётом этого рассчитываются гравитационные аномалии: Δg = g — gср. Например, если g > gcp, то с большой вероятностью в земле содержатся залежи железной руды, в ином случае — нефти или газа.

Решение задач

Свободно двигаться, то есть не испытывать действие сторонних сил, могут любые тела в вакууме. Но в реальности на них оказывается воздействие как атмосферными явлениями, так и сопротивлением среды. При решении задач учитывается только сила тяжести, а вот остальными явлениями пренебрегают, считая их ничтожно малыми.

Вот некоторые из типовых задач, используемые при обучении в среднеобразовательных школах:

Тело вылетает вертикально вверх со скоростью 45 м/с. Какой высоты оно достигнет перед изменением направления полёта и сколько для этого понадобится времени. Для начала следует записать формулу скорости: v = v0 — gt. Отсюда можно рассчитать время полёта: t = v0 / g = 45 / 9,8 = 4,6 c. Теперь можно определить максимальную высоту: h = vot — (gt 2 / 2) = 45 м / с * 4,6 с — 9,8 м / с 2 * (4,6 c) 2 / 2 = 207 м — 103,7 м = 103,3 м.

Рассмотренные задания довольно простые. Но есть и повышенной сложности, требующие не только знания формул, но и умения выполнять анализ. Вот одно из таких.

Вертикальную составляющую можно вычислить, руководствуясь геометрическими принципами: v0y = v0 * sin (a). Учитывая, что h = (gt 2 / 2), для высоты горки можно записать: H = (g * (t 2 1 + t 2 2) / 2) — t1 * v0 sin (a). Так как gt1 = v0 sin (a), то рабочая формула примет вид: H = (g * (t 2 1 + t 2 2) / 2) — gt 2 1. После подстановки данных в ответе должна получиться высота равная 30 метров. Задача решена.

Источник

Комфорт
Adblock
detector