Формула стьюдента коэффициент стьюдента

Содержание
  1. Библиотека постов MEDSTATISTIC об анализе медицинских данных
  2. Ещё больше полезной информации в нашем блоге в Инстаграм @medstatistic
  3. Критерии и методы
  4. t-КРИТЕРИЙ СТЬЮДЕНТА ДЛЯ НЕЗАВИСИМЫХ СОВОКУПНОСТЕЙ
  5. 1. История разработки t-критерия
  6. 2. Для чего используется t-критерий Стьюдента?
  7. 3. В каких случаях можно использовать t-критерий Стьюдента?
  8. 4. Как рассчитать t-критерий Стьюдента?
  9. 5. Как интерпретировать значение t-критерия Стьюдента?
  10. 6. Пример расчета t-критерия Стьюдента
  11. Пример расчета t-критерия Стьюдента для независимых выборок
  12. Библиотека постов MEDSTATISTIC об анализе медицинских данных
  13. Ещё больше полезной информации в нашем блоге в Инстаграм @medstatistic
  14. Критерии и методы
  15. ПАРНЫЙ t-КРИТЕРИЙ СТЬЮДЕНТА
  16. 1. История разработки t-критерия
  17. 2. Для чего используется парный t-критерий Стьюдента?
  18. 3. В каких случаях можно использовать парный t-критерий Стьюдента?
  19. 4. Как рассчитать парный t-критерий Стьюдента?
  20. 5. Как интерпретировать значение t-критерия Стьюдента?
  21. Основные статистики и t-критерий Стьюдента
  22. Описательные статистики
  23. Выборочное среднее
  24. Выборочная дисперсия
  25. Среднеквадратичное отклонение
  26. Коэффициент вариации
  27. Ошибка выборочного среднего
  28. Коэффициент Стьюдента t (одновыборочный t-критерий)
  29. Диалог Основные статистики и таблицы
  30. Выводы
  31. 6.1 Параметрические критерии
  32. 6.1.1 Методы проверки выборки на нормальность
  33. 6.1.2 Критерий Стьюдента ( t-критерий)
  34. 6.1.3 F — критерий Фишера
  35. 6.2 Непараметрические критерии
  36. 6.2.1 Критерий знаков ( G-критерий)

Библиотека постов MEDSTATISTIC об анализе медицинских данных

Ещё больше полезной информации в нашем блоге в Инстаграм @medstatistic

Критерии и методы

t-КРИТЕРИЙ СТЬЮДЕНТА ДЛЯ НЕЗАВИСИМЫХ СОВОКУПНОСТЕЙ

– общее название для класса методов статистической проверки гипотез (статистических критериев), основанных на распределении Стьюдента. Наиболее частые случаи применения t-критерия связаны с проверкой равенства средних значений в двух выборках.

gossetУильям Госсет

1. История разработки t-критерия

Данный критерий был разработан Уильямом Сили Госсетом для оценки качества пива в компании Гиннесс. В связи с обязательствами перед компанией по неразглашению коммерческой тайны, статья Госсета вышла в 1908 году в журнале «Биометрика» под псевдонимом «Student» (Студент).

2. Для чего используется t-критерий Стьюдента?

t-критерий Стьюдента используется для определения статистической значимости различий средних величин. Может применяться как в случаях сравнения независимых выборок (например, группы больных сахарным диабетом и группы здоровых), так и при сравнении связанных совокупностей (например, средняя частота пульса у одних и тех же пациентов до и после приема антиаритмического препарата). В последнем случае рассчитывается парный t-критерий Стьюдента

3. В каких случаях можно использовать t-критерий Стьюдента?

Для применения t-критерия Стьюдента необходимо, чтобы исходные данные имели нормальное распределение. Также имеет значение равенство дисперсий (распределения) сравниваемых групп (гомоскедастичность). При неравных дисперсиях применяется t-критерий в модификации Уэлча (Welch’s t).

При отсутствии нормального распределения сравниваемых выборок вместо t-критерия Стьюдента используются аналогичные методы непараметрической статистики, среди которых наиболее известными является U-критерий Манна — Уитни.

4. Как рассчитать t-критерий Стьюдента?

Для сравнения средних величин t-критерий Стьюдента рассчитывается по следующей формуле:

formula student

5. Как интерпретировать значение t-критерия Стьюдента?

Полученное значение t-критерия Стьюдента необходимо правильно интерпретировать. Для этого нам необходимо знать количество исследуемых в каждой группе (n1 и n2). Находим число степеней свободы f по следующей формуле:

После этого определяем критическое значение t-критерия Стьюдента для требуемого уровня значимости (например, p=0,05) и при данном числе степеней свободы f по таблице (см. ниже).

Сравниваем критическое и рассчитанное значения критерия:

6. Пример расчета t-критерия Стьюдента

Решение: Для оценки значимости различий используем t-критерий Стьюдента, рассчитываемый как разность средних значений, поделенная на сумму квадратов ошибок:

Источник

Пример расчета t-критерия Стьюдента для независимых выборок

Предположим, что надо сравнить между собой результаты выполнения тестов на внимание в двух группах. Чтобы узнать различаются ли группы между собой необходимо вычислить t-критерий Стьюдента для независимых выборок.

1. Внесем данные по группам в таблицу:

Результаты группы №1 (сек.) Результаты группы №2 (сек.)
1 30 46
2 45 49
3 41 52
4 38 55
5 34 56
6 36 40
7 31 47
8 30 51
9 49 58
10 50 46
11 51 46
12 46 56
13 41 53
14 37 57
15 36 44
16 34 42
17 33 40
18 49 58
19 32 54
20 46 53
21 41 51
22 44 57
23 38 56
24 50 44
25 37 42
26 39 49
27 40 50
28 46 55
29 42 43

Шаг 2. Проверить распределения на нормальность.

Шаг 3. Рассчитать среднее арифметическое, стандартное отклонение и количество человек в каждой группе.

Результаты группы №1 (сек.) Результаты группы №2 (сек.)

Шаг 5. Вычисляем степени свободы.

Значение 6,09 больше чем значение 3,473 следовательно уровень значимости меньше 0,001

Шаг 7. Если уровень значимости меньше 0,05 делается вывод о наличи различий между группами. Таким образом между двумя группами есть различия в скорости выполнения тестов на внимание.

Источник

Библиотека постов MEDSTATISTIC об анализе медицинских данных

Ещё больше полезной информации в нашем блоге в Инстаграм @medstatistic

Критерии и методы

ПАРНЫЙ t-КРИТЕРИЙ СТЬЮДЕНТА

– одна из модификаций метода Стьюдента, используемая для определения статистической значимости различий парных (повторных) измерений.

gossetУильям Госсет

1. История разработки t-критерия

t-критерий был разработан Уильямом Госсетом для оценки качества пива в компании Гиннесс. В связи с обязательствами перед компанией по неразглашению коммерческой тайны, статья Госсета вышла в 1908 году в журнале «Биометрика» под псевдонимом «Student» (Студент).

2. Для чего используется парный t-критерий Стьюдента?

3. В каких случаях можно использовать парный t-критерий Стьюдента?

Основным условием является зависимость выборок, то есть сравниваемые значения должны быть получены при повторных измерениях одного параметра у одних и тех же пациентов.

Как и в случае сравнения независимых выборок, для применения парного t-критерия необходимо, чтобы исходные данные имели нормальное распределение. При несоблюдении этого условия для сравнения выборочных средних должны использоваться методы непараметрической статистики, такие как G-критерий знаков или Т-критерий Вилкоксона.

Парный t-критерий может использоваться только при сравнении двухвыборок. Если необходимо сравнить три и более повторных измерений, следует использовать однофакторный дисперсионный анализ (ANOVA) для повторных измерений.

4. Как рассчитать парный t-критерий Стьюдента?

Парный t-критерий Стьюдента рассчитывается по следующей формуле:

tpars formula

5. Как интерпретировать значение t-критерия Стьюдента?

Интерпретация полученного значения парного t-критерия Стьюдента не отличается от оценки t-критерия для несвязанных совокупностей. Прежде всего, необходимо найти число степеней свободы f по следующей формуле:

После этого определяем критическое значение t-критерия Стьюдента для требуемого уровня значимости (например, p Md

3. Найдем среднее квадратическое отклонение разностей от средней по формуле:

sigmad

4. Рассчитаем парный t-критерий Стьюдента:

Источник

Основные статистики и t-критерий Стьюдента

В ходе рассмотрения примера мы будем использовать вымышленные сведения, чтобы читатель мог провести необходимые преобразования самостоятельно.

Так, допустим, в ходе исследований изучали влияние препарата А на содержание вещества В (в ммоль/г) в ткани С и концентрацию вещества D в крови (в ммоль/л) у пациентов, разделенных по какому-то признаку Е на 3 группы равного объема (n = 10). Результаты такого выдуманного исследования приведены в таблице:

исходное содержание в крови

Хотим вас предупредить, что выборки объема 10 рассматриваются нами для простоты представления данных и вычислений, на практике такого объема выборок обычно оказывается недостаточно для формирования статистического заключения.

В качестве примера рассмотрим данные 1-го столбца таблицы.

Описательные статистики

Выборочное среднее

Формула для определения среднего арифметического наблюдений image002(произносится «икс с чертой»):

image002= (12 + 13 + 14 + 15 + 14 + 13 + 13 + 10 + 11 + 16) / 10 = 13,1;

Выборочная дисперсия

8

Выборочная дисперсия данного показателя равна s 2 = 3,2.

Среднеквадратичное отклонение

Стандартное (среднеквадратичное) отклоне­ние — это положительный квадратный корень из дисперсии. На примере n наблюдений это выглядит следующим образом:

9

Мы можем представить себе стандартное отклоне­ние как своего рода среднее отклонение наблюдений от среднего. Оно вычисляется в тех же единицах (размерностях), что и исходные данные.

Коэффициент вариации

Если разделить стандартное отклонение на сред­нее арифметическое и выразить результат в процен­тах, то получится коэффициент вариации.

CV = (1,79 / 13,1) * 100% = 13,7

Ошибка выборочного среднего

1,79 / sqrt (10) = 0,57 [sqrt (x)- функция извлечения квадратного корня из х];

Коэффициент Стьюдента t (одновыборочный t-критерий)

Применяется для проверки гипотезы об отличии среднего значения 2от некоторого известного значения m

7

Количество степеней свободы рассчитывается как f=n-1.

В данном случае доверительный интервал для среднего заключен между границами 11,87 и 14,39.

Для уровня доверительной вероятности 95% m=11,87 или m=14,39, то есть10= |13,1-11,82| = |13,1-14,38| = 1,28

Диалог Основные статистики и таблицы

В модуле Основные статистики и таблицы выберем Описательные статистики.

1

Откроется диалоговое окно Описательные статистики.

В поле Перменные выберем Группу 1.

2

Нажав на Ок, получим таблицы результатов с описательными статистиками выбранных переменных.

3

Чтобы посчитать t-критерий Стьюдента, в модуле Основные статистики и таблицы выберем Одновыборочный t-критерий.

4

Откроется диалоговое окно Одновыборочный t-критерий.

5

Предположим, нам известно, что среднее содержание вещества B в ткани С равно 11.

9

Таблица результатов с описательными статистиками и t-критерием Стьюдента выглядит следующим образом:

8

Нам пришлось отвергнуть гипотезу о том, что среднее содержание вещества В в ткани С равно 11.

Так как вычисленное значение критерия больше табличного (2,26), нулевая гипотеза отвергается на выбранном уровне значимости, и различия между выборкой и известной величиной признаются статистически значимыми. Таким образом, вывод о существовании различий, сделанный с помощью критерия Cтьюдента, подтверждается с помощью данного метода.

Выводы

Статистики и процедуры, включенные в одноименный модуль, условно называются основными статистиками и рассматриваются в одной группе, т.к. обычно они используются совместно, особенно на начальной, разведочной стадии анализа данных. Эти статистики являются базовыми и полезны для самых разнообразных исследований. Вычисление описательных статистик является неотъемлемой частью любого статистического анализа.

Источник

6.1 Параметрические критерии

В группу параметрических критериев методов математической статистики входят методы для вычисления описательных статистик, построения графиков на нормальность распределения, проверка гипотез о при­надлежности двух выборок одной совокупности. Эти методы основыва­ются на предположении о том, что распределение выборок подчиняется нормальному (гауссовому) закону распределения. Среди параметрических критериев статистики нами будут рассмотрены критерий Стьюдента и Фишера.

6.1.1 Методы проверки выборки на нормальность

Чтобы определить, имеем ли мы дело с нормальным распределением, можно применять следующие методы:

1) в пределах осей можно нарисовать полигон частоты (эмпирическую функцию распределения) и кривую нормального распределения на основе данных исследования. Исследуя формы кривой нормального распределения и графика эмпирической функции распределения, можно выяснить те параметры, которыми последняя кривая отличается от первой;

2) вычисляется среднее, медиана и мода и на основе этого определяется отклонение от нормального распределения. Если мода, медиана и среднее арифметическое друг от друга значительно не отличаются, мы имеем дело с нормальным распределением. Если медиана значительно отличается от среднего, то мы имеем дело с асимметричной выборкой.

3) эксцесс кривой распределения должен быть равен 0. Кривые с положительным эксцессом значительно вертикальнее кривой нормального распределения. Кривые с отрицательным эксцессом являются более покатистыми по сравнению с кривой нормального распределения;

4) после определения среднего значения распределения частоты и стандартного oтклонения находят следующие четыре интервала распределения сравнивают их с действительными данными ряда:

а) lectio4— к интервалу должно относиться около 25% частоты совокупности,

б) lectio5— к интервалу должно относиться около 50% частоты совокупности,

в) lectio6— к интервалу должно относиться около 75% частоты совокупности,

г) lectio7— к интервалу должно относиться около 100% частоты совокупности.

6.1.2 Критерий Стьюдента ( t-критерий)

Критерий позволяет найти вероятность того, что оба средних значения в выборке относятся к одной и той же совокупности. Данный критерий наиболее часто используется для проверки гипотезы: «Средние двух выборок относятся к одной и той же совокупности».

При использовании критерия можно выделить два случая. В первом случае его применяют для проверки гипотезы о равенстве генеральных средних двух неза­висимых, несвязанных выборок (так называемый двухвыборочный t-критерий). В этом случае есть контрольная группа и экспериментальная (опытная) группа, количество испытуемых в группах может быть различно.

Во втором случае, когда одна и та же группа объектов порождает числовой матери­ал для проверки гипотез о средних, используется так называемый парный t-критерий. Выборки при этом называют зависимыми, связанными.

Статистика критерия для случая несвязанных, независимых выборок равна:

lectio8(1)

где lectio9, lectio10— средние арифметические в эксперименталь­ной и контрольной группах,

lectio11— стан­дартная ошибка разности средних арифметических. Находится из формулы:

lectio12, (2)

где n 1 и n 2 соответственно величины первой и второй выборки.

Если n 1= n 2, то стандартная ошибка разности средних арифметических будет считаться по формуле:

lectio13(3)

где n величина выборки.

Подсчет числа степеней свободы осуществля­ется по формуле:

Далее необходимо срав­нить полученное значение t эмп с теоретическим значением t—рас­пределения Стьюдента (см. приложение к учеб­никам статистики). Если t эмп t крит, то гипотеза H 0 принимается, в противном случае нулевая гипотеза отвергается и принимается альтернативная гипотеза.

Таблица 1. Результаты эксперимента

Первая группа (экспериментальная) N 1=11 человек

Вторая группа (контрольная)

12 14 13 16 11 9 13 15 15 18 14

13 9 11 10 7 6 8 10 11

Общее количество членов выборки: n 1=11, n 2=9.

Расчет средних арифметических: Хср=13,636; Y ср=9,444

Стандартное отклонение: s x=2,460; s y =2,186

По формуле (2) рассчитываем стандартную ошибку разности арифметических средних:

lectio14

Считаем статистику критерия:

lectio15

Сравниваем полученное в эксперименте значение t с табличным значением с учетом степеней свободы, равных по формуле (4) числу испытуемых минус два (18).

Табличное значение tкрит равняется 2,1 при допущении возможности риска сделать ошибочное сужде­ние в пяти случаях из ста (уровень значимости=5 % или 0,05).

Если полученное в эксперименте эмпирическое значение t превы­шает табличное, то есть основания принять альтернативную гипотезу (H1) о том, что учащиеся экспериментальной группы показывают в среднем более высокий уровень знаний. В эксперименте t=3,981, табличное t=2,10, 3,981>2,10, откуда следует вывод о преимуществе эксперимен­тального обучения.

Здесь могут возникнуть такие вопросы:

1. Что если полученное в опыте значение t окажется меньше табличного? Тогда надо принять нулевую гипотезу.

2. Доказано ли преимущество экспериментального метода? Не столько доказано, сколько показано, потому что с самого начала допускается риск ошибиться в пяти случаях из ста (р=0,05). Наш эксперимент мог быть одним из этих пяти случаев. Но 95% возможных случаев говорит в пользу альтернативной гипотезы, а это достаточно убедительный аргумент в статистическом доказательстве.

3. Что если в контрольной группе результаты окажутся выше, чем в экспериментальной? Поменяем, например, местами, сделав lectio16средней арифметической эксперимен­тальной группы, a lectio17— контрольной:

lectio18

Отсюда следует вывод, что новый метод пока не про­явил себя с хорошей стороны по разным, возможно, при­чинам. Поскольку абсолютное значение 3,9811>2,1, принимается вторая альтернативная гипотеза (Н2) о пре­имуществе традиционного метода.

В случае связанных выборок с равным числом измерений в каждой можно использовать более простую формулу t-критерия Стьюдента.

Вычисление значения t осуществляется по формуле:

lectio19(5)

Sd вычисляется по следующей формуле:

lectio21(6)

Если t эмп t крит, то нулевая гипотеза принимается, в противном случае принимается альтернативная.

Пример 2. Изучался уровень ориентации учащихся на художественно-эстети­ческие ценности. С целью активизации формирования этой ориентации в экспериментальной группе проводились бе­седы, выставки детских рисунков, были организованы по­сещения музеев и картинных галерей, проведены встречи с музыкантами, художниками и др. Закономерно встает вопрос: какова эффективность проведенной работы? С целью проверки эффективности этой работы до начала эксперимента и после давался тест. Из методических со­ображений в таблице 2 приводятся результаты небольшо­го числа испытуемых. [2]

Таблица 2. Результаты эксперимента

до начала экспери­мента (Х)

Вначале произведем расчет по формуле:

lectio22

Затем применим формулу (6), получим:

lectio23

И, наконец, следует применить формулу (5). Получим:

lectio24

Число степеней свободы: k =10-1=9 и по таблице При­ложения 1 находим tкрит =2.262, экспериментальное t=6,678, откуда следует возможность принятия альтерна­тивной гипотезы (H1) о достоверных различиях средних арифметических, т. е. делается вывод об эффективности экспериментального воздействия.

6.1.3 F — критерий Фишера

Критерий Фишера позволяет сравнивать величины выбороч­ных дисперсий двух независимых выборок. Для вычисления Fэмп нуж­но найти отношение дисперсий двух выборок, причем так, что­бы большая по величине дисперсия находилась бы в числителе, а меньшая – в знаменателе. Формула вычисления критерия Фи­шера такова:

lectio25(8)

где lectio26— дисперсии первой и второй выборки соответственно.

Так как, согласно условию критерия, величина числителя должна быть больше или равна величине знаменателя, то значе­ние Fэмп всегда будет больше или равно единице.

Чис­ло степеней свободы определяется также просто:

В Приложе­нии 1 критические значения критерия Фишера находятся по величинам k 1 (верхняя строчка таблицы) и k 2 (левый столбец таблицы).

Если t эмп> t крит, то нулевая гипотеза принимается, в противном случае принимается альтернативная.

Пример 3. В двух третьих классах проводилось тестирование умственного развития по тесту ТУРМШ десяти учащихся. [3] Полученные значения величин средних достоверно не различались, однако психолога интересует вопрос — есть ли различия в степени однородности показателей умственного развития между классами.

Решение. Для критерия Фишера необходимо сравнить дис­персии тестовых оценок в обоих классах. Резуль­таты тестирования представлены в таблице:

Рассчитав дисперсии для переменных X и Y, получаем:

Тогда по формуле (8) для расчета по F критерию Фишера находим:

lectio27

6.2 Непараметрические критерии

Сравнивая на глазок (по процентным соотношениям) результаты до и после какого-либо воздействия, исследователь приходит к заключению, что если наблюдаются различия, то имеет место различие в сравниваемых выборках. Подобный подход категорически неприемлем, так как для процентов нельзя определить уровень достоверности в различиях. Проценты, взятые сами по себе, не дают возможности делать статистически достоверные выводы. Чтобы доказать эффективность какого-либо воздействия, необходимо выявить статистически значимую тенденцию в смещении (сдвиге) показателей. Для решения подобных задач исследователь может использовать ряд критериев различия. Ниже будет рассмотрены непараметрические критерии: критерий знаков и критерий хи-квадрат.

6.2.1 Критерий знаков ( G-критерий)

Критерий предназначен для срав­нения состояния некоторого свойства у членов двух зави­симых выборок на основе измерений, сделанных по шка­ле не ниже ранговой.

Нулевая гипотеза формулируются следующим обра­зом: в состоянии изучаемого свойства нет значимых различий при первичном и вторичном измерениях. Альтернативная гипотеза: законы распределения величин X и У различны, т. е. состояния изучаемого свойства существенно раз­личны в одной и той же совокупности при первичном и вторичном измерениях этого свойства.

Ста­тистика критерия (Т) определяется следую­щим образом:

Пример 4. Учащиеся выполняли контрольную ра­боту, направленную на проверку усвоения некоторого понятия. Пятнадцати учащимся затем предложили электронное пособие, составленное с целью фор­мирования данного понятия у учащихся с низким уров­нем обучаемости. После изучения пособия учащиеся снова выполняли ту же контрольного работу, которая оценивалась по пятибалльной системе.

Результаты двукратного выполнения ра­боты представляют измерения по шкале по­рядка (пятибалльная шкала). В этих условиях возмож­но применение знакового критерия для выявления тенденции изменения состояния знаний учащихся после изучения пособия, так как выполняются все допуще­ния этого критерия.

Результаты двукратного выполнения работы (в бал­лах) 15 учащимися запишем в форме таблицы (см. табл. 1). [4]

Источник

Комфорт
Adblock
detector
Содержание вещества B, ммоль/г