Формула с температурным коэффициентом

Температурный коэффициент

25px Disambig dark.svg

содержание

Основы

20 ° C часто выбирают в качестве эталонной температуры.

В общем, любую температурную характеристику можно описать рядом Тейлора :

Аппроксимация получается полиномом Тейлора n-й степени:

Следует отметить, что температурные коэффициенты зависят от эталонной температуры.

Пример: температурные коэффициенты для идеального газа

При идеализирующих предположениях изменение давления и изменение объема линейны.

Пример: температурный коэффициент электрического сопротивления

Имеющиеся в продаже маломощные резисторы, значение сопротивления которых должно быть как можно более постоянным во всем диапазоне рабочих температур, обычно имеют температурные коэффициенты в диапазоне от 100 ppm на Кельвин до 200 ppm на Кельвин, прецизионные резисторы доступны в диапазон от 50 ppm на Кельвин до 1 ppm на Кельвин. В этом случае линейный температурный коэффициент указывается с префиксом TK (на английском языке с префиксом «TC» для температурного коэффициента ), например TK100 для сопротивления с 100 ppm на Кельвин.

Дальнейшие примеры

Помимо уже упомянутых общеизвестных температурных коэффициентов электрического сопротивления или объема или давления для идеальных газов, существует множество других температурных коэффициентов. Для определенного объекта температурная зависимость определенного размера обычно технически актуальна, поэтому этот объект или его использование просто упоминается как «один» (один) температурный коэффициент, и поэтому ясно, какой размер изменяется, примеры включают:

Источник

ТКС резистора (TCR resistor)

Температурный коэффициент сопротивления резистора

Так как под воздействием температуры окружающей среды или из-за нагрева самого резистора удельное сопротивление его резистивного слоя может меняться, то для обозначения термостабильности резисторов ввели такое понятие, как температурный коэффициент сопротивления (ТКС).

В зарубежной документации он именуется, как TCR (Temperature Coefficient of Resistance).

ТКС показывает насколько меняется сопротивление резистора при изменении температуры на 1°С или 1° Кельвина. Так как температура может меняться в большую или меньшую сторону, то указывается знак «±». Начальной температурой считается +25°С (комнатная), если другое значение не оговаривается отдельно.

Формула расчёта ТКС.

formula raschyota tks

TCR – температурный коэффициент сопротивления (ТКС), (ppm/°С);

R1 – сопротивление при комнатной температуре +25°С, (Ω);

R2 – сопротивление при рабочей температуре, (Ω);

T1 – комнатная температура (+25°С);

T2 – рабочая температура при которой производится тестовое измерение, (°С).

Данную формулу также нередко записывают и в сокращённом виде:

sokrashchyonnaya formula tks

В технической документации на импортные резисторы температурный коэффициент может указываться как в градусах (± ppm/°С), так и в Кельвинах (± ppm/K). Это одно и то же.

Чтобы представить, что же такое ppm/°С в более наглядном виде, приведу пример.

Допустим, что у нас имеется резистор сопротивлением 1000000 Ω (один миллион Ом, или МегаОм – 1 МОм). Мы знаем, что его температурный коэффициент равен ±25 ppm/°С. Так как 25 – это количество частей от одного миллиона, то получаем 25/1000000 = 0,000025. Умножаем 0,000025 на 1000000 (номинал нашего резистора), чтобы узнать, каково же будет изменение в Омах. Получаем 25. То есть это всего 25 Ом от нашего мегаомного резистора. Именно на такую величину изменится сопротивление нашего резистора, если температура поднимется на 1°С. Тогда его результирующее сопротивление составит 1000000 (Ω) + 25 (Ω) = 1000025 (Ω).

Обращаю внимание на то, что ppm не имеет размерности. Тут речь идёт именно о долях от чего либо, в данном случае миллиона!

В процентах это будет 0,000025 × 100% = 0,0025%. То есть сопротивление резистора изменится на 0,0025% по отношению к первоначальному (1 Мом).

Другой пример, более приближённый к практике.

Имеется резистор на 56 килоОм (56 000 Ом). Его температурный коэффициент составляет ±50 ppm/°С. Давайте рассчитаем, в каких пределах будет меняться его сопротивление при изменении температуры на ±10°С. То есть при охлаждении на 10°С, так и нагреве на 10°С. Диапазон изменения температуры в данном случае составит 20°С.

Как уже говорилось, стартовой температурой отсчёта считается +25°С. Именно при такой температуре наш резистор имеет сопротивление 56 кОм.

Сначала узнаем, насколько изменится сопротивление нашего резистора при изменении температуры на 1°С. Считать будем по следующей формуле. Наверняка уже заметили, что это та же самая формула расчёта ТКС, только изменённая.

izmenenie soprotivleniya iz za temperatury

ΔR – величина, на которое изменится сопротивление (в Омах, Ω);

R0 – сопротивление резистора при +25°С (комнатная температура);

ΔT – изменение температуры, °С. В нашем случае, это 1°С.

raschyot izmeneniya soprotivleniya

Таким образом мы узнали, что при изменении температуры на 1 градус, сопротивление нашего резистора изменится на 2,8 Ом. Соответственно, при изменении температуры на 10°С, сопротивление изменится на 28 Ом. В результате получаем диапазон изменения сопротивления от 55972 Ом (при 15°С) до 56 028 Ом (при 35°С). Как видим, наш резистор имеет очень хорошую термостабильность. Его сопротивление меняется незначительно, особенно, если учесть тот факт, что среди резисторов много и таких, у которых ТКС равен 100. 300 ppm/°С.

Как пример, далее показан график, взятый из даташита на серию резисторов VSMP от Vishay. На нём показаны значения T.C.R для разных температурных диапазонов.

znacheniya tks dlya raznyh temperaturnyh diapazonov

+600 ppm/°С. Это означает, что при понижении температуры резистор ведёт себя более стабильней, и его сопротивление изменяется меньше, чем при её повышении.

Можно заметить и то, что для конкретного диапазона сопротивлений указывается своя величина T.C.R.

tks uglerodistyh rezistorov serii cf

Величина ТКС не указывается в маркировке резисторов. Узнать его можно из технической документации на конкретную серию резисторов. Надо отметить, что ТКС резистора сильно зависит от материала, из которого изготовлен его резистивный слой, а также технологии его производства.

Далее для сравнения приведены величины ТКС для резисторов с разной резистивной основой и технологией производства.

Тип резистора и его температурный коэффициент сопротивления:

Самым большим (и плохим) температурным коэффициентом обладают резисторы с проводящим слоем на основе углерода. Их ТКС может достигать 5000 ppm/°С! Резисторы на основе углеродной проводящей плёнки (carbon film resistors) имеют ТКС в диапазоне 200. 500 ppm/°С (CF-25, CF-100 и им подобные). Именно поэтому допуск (точность) таких резисторов редко меньше 5%.

Металлоплёночные (серия MF, например, MF-100). Их TCR обычно лежит в диапазоне ±15. 100 ppm/°С, но в некоторых случаях вплоть до 10 ppm/°С. На фото – металлоплёночные прецизионные резисторы серии RN (Military). Нашёл их на печатной плате от промышленного станка. ТКС резистора RN55E – 25 ppm/°С, а RN55D – 100 ppm/°С.

metalloplyonochnye rezistory rn55

Металлооксидные плёночные резисторы (серия MO, например, MO-200) имеют ТКС в диапазоне 100. 200 ppm/°С.

На фото показаны металлооксидные (металлодиэлектрические) резисторы МО-200 (160Ω, 5%). Их ТКС равен 200 ppm/°С;

rezistory mo 200

Толстоплёночные чип-резисторы (T.C.R составляет 50. 200 ppm/°С, реже 300 ppm/°С);

tolstoplyonochnye chip rezistory

Тонкоплёночные чип-резисторы (ТКС составляет 5. 50 ppm/°С). Это одни из самых термостабильных резисторов. Малым ТКС обладают тонкоплёночные прецизионные резисторы. Он может составлять всего ±2–5 ppm/°С. В документации на такие резисторы можно встретить обозначение Low TCR – низкий ТКС;

Самым малым ТКС обладают фольговые резисторы (Bulk Metal ® Foil, BMF). Это самые термостабильные из всех существующих резисторов. Например, ультрамалый ТКС (всего 0,05 ppm/°С) имеют прецизионные фольговые резисторы серии VSMP Vishay (сверхточные фольговые резисторы для поверхностного монтажа).

rezistory vsr vishay

Стоит отметить, что величина ТКС очень сильно влияет на тот самый допуск (или точность) резистора, которую указывают в процентах и кодируют в его маркировке (0,5%, 1%, 2%, 5%).

Напомню, что допуск указывает на разброс реального сопротивления резистора, который образуется из-за многих факторов, например, из-за погрешности технологии производства. Сюда же входит и разброс сопротивления из-за наличия ТКС. Именно поэтому, у резисторов с плохой термостабильностью (например, углеродистых) допуск также очень большой, так как при массовом производстве очень трудно сделать его меньше 2. 5%.

Аналогичная ситуация обстоит и с толстоплёночными SMD-резисторами. В составе резистивной пасты, которая используется для формирования проводящего слоя, присутствует серебро, из-за которого ТКС таких резисторов, как правило, не менее 50 ppm/°С.

Источник

СОДЕРЖАНИЕ

Отрицательный температурный коэффициент

Большинство керамических материалов демонстрируют отрицательную температурную зависимость сопротивления. Этот эффект регулируется уравнением Аррениуса в широком диапазоне температур:

Следовательно, многие материалы, которые обеспечивают приемлемые значения, включают материалы, которые были легированы или обладают переменным отрицательным температурным коэффициентом (NTC), который возникает, когда физические свойства (такие как теплопроводность или удельное электрическое сопротивление ) материала снижаются с повышением температуры, обычно в определенный температурный диапазон. Для большинства материалов удельное электрическое сопротивление будет уменьшаться с повышением температуры. р 0 <\ displaystyle R_ <0>> svg

Обратимый температурный коэффициент

Остаточная плотность магнитного потока или B r изменяется в зависимости от температуры, и это одна из важных характеристик характеристик магнита. Для некоторых приложений, таких как инерционные гироскопы и лампы бегущей волны (ЛБВ), требуется постоянное поле в широком диапазоне температур. Коэффициент обратимой температуры (РКИ) из B R определяются следующим образом:

RTC знак равно | Δ B р | | B р | Δ Т × 100 % <\ displaystyle <\ text > = <\ frac <| \ Delta \ mathbf _ |> <| \ mathbf _ | \ Delta T>> \ times 100 \ %> svg

Электрическое сопротивление

Однако в полупроводнике экспоненциально:

Это свойство используется в таких устройствах, как термисторы.

Положительный температурный коэффициент сопротивления

Отрицательный температурный коэффициент сопротивления

Отрицательный температурный коэффициент сопротивления полупроводника

Повышение температуры полупроводникового материала приводит к увеличению концентрации носителей заряда. Это приводит к большему количеству носителей заряда, доступных для рекомбинации, что увеличивает проводимость полупроводника. Увеличение проводимости вызывает уменьшение удельного сопротивления полупроводникового материала с повышением температуры, что приводит к отрицательному температурному коэффициенту сопротивления.

Температурный коэффициент упругости

Модуль упругости эластичных материалов изменяется с температурой, обычно снижаясь с повышением температуры.

Температурный коэффициент реактивности

В ядерной технике температурный коэффициент реактивности является мерой изменения реактивности (приводящего к изменению мощности), вызванного изменением температуры компонентов реактора или теплоносителя реактора. Это можно определить как

Математический вывод аппроксимации температурного коэффициента

В более общем виде дифференциальный закон температурных коэффициентов имеет следующий вид:

Интегрируя дифференциальный закон температурных коэффициентов:

R (T) = R_ <0>e ^ <\ alpha (T-T_ < 0>)>> svg

Применение приближения ряда Тейлора в первом порядке вблизи от приводит к: Т 0 <\ displaystyle T_ <0>> svg

Единицы измерения

Источник

Температурный коэффициент сопротивления

Электрическое сопротивление проводника в общем случае зависит от материала проводника, от его длины и от поперечного сечения, или более кратко — от удельного сопротивления и от геометрических размеров проводника. Данная зависимость общеизвестна и выражается формулой:

1491239728 21

Известен каждому и закон Ома для однородного участка электрической цепи, из которого видно, что ток тем меньше, чем сопротивление выше. Таким образом, если сопротивление проводника постоянно, то с ростом приложенного напряжения ток должен бы линейно расти. Но в реальности это не так. Сопротивление проводников не постоянно.

1491239805 2

За примерами далеко ходить не надо. Если к регулируемому блоку питания (с вольтметром и амперметром) подключить лампочку, и постепенно повышать напряжение на ней, доводя до номинала, то легко заметить, что ток растет не линейно: с приближением напряжения к номиналу лампы, ток через ее спираль растет все медленнее, причем лампочка светится все ярче.

1491239773 10

Нет такого, что с увеличением вдвое приложенного к спирали напряжения, вдвое возрос и ток. Закон Ома как-будто не выполняется. На самом деле закон Ома выполняется, и точно, просто сопротивление нити накала лампы непостоянно, оно зависит температуры.

1491239736 3

Вспомним, с чем связана высокая электрическая проводимость металлов. Она связана с наличием в металлах большого количества носителей заряда — составных частей тока — электронов проводимости. Это электроны, образующиеся из валентных электронов атомов металла, которые для всего проводника являются общими, они не принадлежат каждый отдельному атому.

Под действием приложенного к проводнику электрического поля, свободные электроны проводимости переходят из хаотичного в более-менее упорядоченное движение — образуется электрический ток. Но электроны на своем пути встречают препятствия, неоднородности ионной решетки, такие как дефекты решетки, неоднородная структура, вызванные ее тепловыми колебаниями.

Электроны взаимодействуют с ионами, теряют импульс, их энергия передается ионам решетки, переходит в колебания ионов решетки, и хаос теплового движения самих электронов усиливается, от того проводник и нагревается при прохождении по нему тока.

В диэлектриках, полупроводниках, электролитах, газах, неполярных жидкостях — причина сопротивления может быть иной, однако закон Ома, очевидно, не остается постоянно линейным.

Таким образом, для металлов, рост температуры приводит к еще большему возрастанию тепловых колебаний кристаллической решетки, и сопротивление движению электронов проводимости возрастает. Это видно по эксперименту с лампой: яркость свечения увеличилась, но ток возрос слабее. То есть изменение температуры повлияло на сопротивление нити накаливания лампы.

В итоге становится ясно, что сопротивление металлических проводников зависит почти линейно от температуры. А если принять во внимание, что при нагревании геометрические размеры проводника меняются слабо, то и удельное электрическое сопротивление почти линейно зависит от температуры. Зависимости эти можно выразить формулами:

1491239778 4

Данный коэффициент численно равен относительному изменению электрического сопротивления проводника при изменении его температуры на 1К (на один градус Кельвина, что равноценно изменению температуры на один градус Цельсия).

1491239786 5

Для металлов ТКС (температурный коэффициент сопротивления α) хоть и относительно мал, но всегда больше нуля, ведь при прохождении тока электроны тем чаще сталкиваются с ионами кристаллической решетки, чем выше температура, то есть чем выше тепловое хаотичное их движение и чем выше их скорость. Сталкиваясь в хаотичном движении с ионами решетки, электроны металла теряют энергию, что мы и видим в результате — сопротивление при нагревании проводника возрастает. Данное явление используется технически в термометрах сопротивления.

1491239755 6

Что касается чистых полупроводников, то для них ТКС отрицателен, то есть сопротивление снижается с ростом температуры, это связано с тем, что с ростом температуры все больше электронов переходят в зону проводимости, растет при этом и концентрация дырок. Этот же механизм свойственен для жидких неполярных и твердых диэлектриков.

Полярные жидкости свое сопротивление резко уменьшают с ростом температуры из-за снижения вязкости и роста диссоциации. Это свойство применяется для защиты электронных ламп от разрушительного действия больших пусковых токов.

У сплавов, легированных полупроводников, газов и электролитов тепловая зависимость сопротивления более сложна чем у чистых металлов. Сплавы с очень малым ТКС, такие как манганин и константан, применяют в электроизмерительных приборах.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Формула с температурным коэффициентом

Температурный коэффициент сопротивления

Как вы могли заметить, значения удельных электрических сопротивлений в таблице из предыдущей статьи даны при температуре 20 ° Цельсия. Если вы предположили, что они могут измениться при изменении температуры, то оказались правы.

Зависимость сопротивления проводов от температуры, отличной от стандартной (составляющей обычно 20 градусов Цельсия), можно выразить через следующую формулу:

fizika20

Проводник α, на градус Цельсия
Никель 0,005866
Железо 0,005671
Молибден 0,004579
Вольфрам 0,004403
Алюминий 0,004308
Медь 0,004041
Серебро 0,003819
Платина 0,003729
Золото 0,003715
Цинк 0,003847
Сталь (сплав) 0,003
Нихром (сплав) 0,00017
Нихром V (сплав) 0,00013
Манганин (сплав) 0,000015
Константан (сплав) 0,000074

Давайте на примере нижеприведенной схемы посмотрим, как температура может повлиять на сопротивление проводов и ее функционирование в целом:

fizika21

Общее сопротивление проводов этой схемы (провод 1 + провод 2) при стандартной температуре 20 ° С составляет 30 Ом. Проанализируем схему с помощью таблицы напряжений токов и сопротивлений:

fizika22

При 20 ° С мы получаем 12,5 В на нагрузке, и в общей сложности 1,5 В (0,75 + 0,75) падения напряжения на сопротивлении проводов. Если температуру поднять до 35 ° С, то при помощи вышеприведенной формулы мы легко сможем рассчитать изменение сопротивления на каждом из проводов. Для медных проводов (α = 0,004041) это изменение составит:

fizika23

Пересчитав значения таблицы, мы можем увидеть к каким последствиям привело изменение температуры:

fizika24

Сравнив эти таблицы можно прийти к выводу, что напряжение на нагрузке при увеличении температуры снизилось (с 12,5 до 12,42 вольт), а падение напряжения на проводах увеличилось (с 0,75 до 0,79 вольт). Изменения на первый взгляд незначительны, но они могут быть существенны для протяженных линий электропередач, связывающих электростанции и подстанции, подстанции и потребителей.

Источник

Комфорт
Adblock
detector