Формула расчета коэффициента усиления антенны

Коэффициент усиления антенны

Определение и формула коэффициента усиления антенны

Можно определение коэффициента усиления представить несколько иначе: Коэффициент усиления антенны — это относительная величина, отражающая эффективность рассматриваемой антенны в сравнении с полуволновым диполем (изотропным излучателем).

Чаще всего обозначением для коэффициента усиления служит буква G.

Коэффициент усиления антенны показывает, какова способность антенны концентрировать сигнал в определенном направлении. Антенны предназначены не для усиления, а для концентрации сигнала в избранном направлении. Коэффициент усиления антенны является количественной характеристикой возможности антенны сконцентрировать мощность электромагнитного излучения в узком пучке, при учете потерь на конструктивных элементах антенны и близких к ней объектах.

Коэффициент усиления антенны связан с коэффициентом направленного действия (D) и КПД антенны (quicklatex.com d4ddf3762029c85916dfaffe4cb61f4c l3) соотношением:

quicklatex.com 5a294bc465891128048c73f3d1eb0f7e l3

Так же говорят, что коэффициент усиления антенны отражает, во сколько раз следует увеличить мощность на входе антенны, если заменить рассматриваемую антенну идеальной ненаправленной антенной и при этом плотность потока мощности электромагнитной волны, которую излучает антенна измениться в точке, где проводится наблюдение, не должно. Считают, что КПД ненаправленной антенны равен одному.

Из двух антенн, обладающих одинаковыми коэффициентами усиления и сходными конструкциями, меньшие размеры будет иметь та антенна, которая назначается для приема волн меньшей длины.

Введение коэффициента усиления антенны, как самостоятельного параметра связано с тем, что эту величину можно измерить при помощи метода сравнения. При этом используется эталонная антенна с известным коэффициентом усиления.

Диаграмма направленности

Направленность антенны показывает, как изменяется коэффициент усиления антенны в зависимости от направления. Для изображения направленности применяют специальные графики, которые называют диаграммами направленности. Направленность связана с конструкцией антенны. Диаграммы направленности рассматривают для горизонтальных и вертикальных плоскостей.

Единицы измерения коэффициента усиления антенны

Коэффициент усиления антенны может быть безразмерным или может быть выражен в децибелах. При этом:

quicklatex.com dc625eb69c9aa50d6310afdab6ad2bc4 l3

Коэффициент усиления антенны по отношению к диполю, обычно представлен в дБ, а в отношении к изотропному излучателю в дБи. Например, если G=5 дБи, то в отношении к диполю G=5-2,14=2,86дБ.

Примеры решения задач

Задание Каков коэффициент усиления антенны, если ее КПД равен 0,5 при коэффициенте направленного действия 13 дБ?
Решение В качестве основы для решения задачи используем формулу для коэффициента усиления:

quicklatex.com c8f3bbc4f1195f7c292b0cc9f37c3197 l3

Примем во внимание, что коэффициент направленного действия задан в дБ:

quicklatex.com 4ac600e8ba9a1c1461ecbc3b4cbaaaea l3

quicklatex.com 88958369b4c50fbfc676e8589135594d l3

quicklatex.com a4b4478d2065df1a4f73ba53714df7c5 l3

Задание На вход системы последовательных передающих устройств (рис.1) подана мощность 8 мВт. Первый компонент системы имеет затухание 24 дБ, второй элемент усиливает сигнал (коэффициент усиления 35 дБ), третий с затуханием 10 дБ. Какой будет мощность на выходе?

pic2183

Решение Коэффициенты усиления даны в дБ, значит результирующий коэффициент усиления (G) антенны найдем как алгебраическую сумму, коэффициентов отдельных передающих антенн:

quicklatex.com 57b6438c9c3e1cee29a5d2417a7d4fdf l3

Вычислим коэффициент усиления:

quicklatex.com d12f1ba8e07451d8ba854bc0b6b3b9e0 l3

quicklatex.com 89929cfc1159addbb1b5653443b642ab l3

По определению коэффициента усиления антенны:

quicklatex.com 9853d54fd69042cbc31b12473b67f454 l3

quicklatex.com bfcca5f75a6ea6db809ab838dfacbb2d l3мВт

Ответ quicklatex.com aac964789c7de48fc79c0ffb8525a02f l3мВт

Копирование материалов с сайта возможно только с разрешения
администрации портала и при наличие активной ссылки на источник.

Источник

Что такое коэффициент усиления антенны: ответ Wi-Fi-Гида

Всем привет! Я не буду вас грузить сложными понятиями, а также формулами. Те люди, которые их знают, на эту статью точно не попадут. Я постараюсь приблизительно представить в вашей голове, что же такое коэффициент усиления антенны. Во второй главе я расскажу, как можно усилить Wi-Fi или мобильный интернет (3G, 4G), так же как можно ловить или передавать интернет на многие километры. Если у вас останутся вопросы после прочтения статьи, то пишите в комментариях.

Разбор

Давайте начнем с самого начала. Все эти антенны нужны для излучения радиоволн. Что же такое радиоволны? – это электромагнитное излучение. Её используют почти везде – мобильна связь 3G, 4G, 5G, LTE, Wi-Fi, спутниковый интернет, радио и т.д.

Свет является такой же волной, только имеет более высокую частоту. Давайте представим себе, что у нас есть лампочка. Мы возьмем эту лампочку и прикрутим её в большой комнате. Если включить эту лампочку, то свет начнет светить во все стороны. Так как комната большая, то большая часть углов будут еле-еле подсвечены или будут полностью погружены во мрак.

2 20

Теперь мы возьмем, и с одной стороны лампочки установим специальный отражатель с зеркальной поверхностью. Теперь лампа начнет светить только в одну сторону – пучок света стал сильнее и может осветить даже более темные участки и углы. Если отражатель сделать уже по отношению к выходному свету, то пучок станет также уже, а расстояние, на которое сможет пройти свет без серьезного затухания, станет выше. Но с других сторон, где свету преграждает стенки отражателя – везде будет тьма. На таком принципе работаю все фонарики.

А теперь мы подобрались к простому определению. Коэффициент усиления (КУ) антенны – это способность антенны концентрировать сигнал в определенном направлении, при этом возможность как принимать, так и передавать сигнал.

Рассчитывается как отношение мощности, которая необходима, чтобы создать напряжение антенны в концентрированном направлении, к мощности, которая нужна была бы (в теории), чтобы подвести к эталонной антенне для создания такой же напряженности поля в той же точке.

Пока ничего не понятно? Смотрите, эталонная антенна – это та антенна, которая как наша лампочка распространяет радиоволны во все стороны. А вот реальная антенна – это как раз та самая лампочка с отражателем, которая концентрирует сигнал в определенный пучок.

1 20

Посмотрите на рисунок выше. КУ – это как раз размер того самого пучка. Чем выше КУ, тем сам пучок имеет меньший угол, но более высокую длину или, если быть точнее, дальность распространения. КУ антенны измеряется в децибелах (дБ, дБи, дБд). В характеристиках роутера, а также у 3G/4G или Wi-Fi антенн обычно используется показатель dBi (или дБи).

Посмотрите на картинку ниже. Как понятно из картинки, чем больше параметр dBi, тем дальше летит радиоволна. Но тут также нужно учитывать, что сам размер пучка становится меньше.

3 19

Именно поэтому дома у роутера устанавливают всенаправленные антенны с dBi от 3 до 5, чтобы не приходилось ходить с телефоном и ловить этот самый пучок. Но если вы хотите передать интернет с вай-фай на несколько километров по мосту, то уже используют устройства с большим показателем КУ – от 15 dBi и больше.

Как улучшить сигнал и усилить антенну?

Смотря для чего вы хотите это сделать. Для домашнего Wi-Fi можно сделать отдельную всенаправленную антенну. Особенно это помогает, если антенки у маршрутизатора внутренние. Второй вариант, если вы хотите построить вай-фай мост.

Что такое Wi-Fi мост? Представим ситуацию, что вы живете в частном доме. А ваш брат через пару километров в многоэтажке. Все провайдеры вам отказывают проводить интернет. 3G/4G не ловит, и тогда на помощь может прийти Wi-Fi мост. Ваш брат покупает (или делает сам) Wi-Fi пушку, которая подключена к его роутеру. Вы делаете или покупаете аналогичное устройство.

4 17

Обе эти Wi-Fi пушки из-за большого КУ должны быть направлены точно друг на друга. Вспоминаем, чем больше КУ, тем дальше летит радиоволна, но имеет меньший размер луча. Вот таким вот образом можно передать вай-фай с интернетом по мосту на несколько километров.

Если же вы хотите усилить мобильный сигнал, то все делается примерно аналогично. Покупаем или делаем узконаправленную антенну с высоким КУ. Направляем её на вышку. Антенну можно подключить к повторителю дома. Опять же есть как самодельные варианты, так и покупные. О тех и других я уже подробно писал тут.

Формула

5 15

Видео

Если еще остались вопросы, то можете посмотреть полезное видео ниже или обратиться ко мне в комментариях.

Источник

Коэффициент усиления

Так, например, усиление той же антенны 90 см в децибелах будет равно 10log(8000) = 39 дБ. Логарифмические единицы удобнее для записи и расчетов, однако, часто вводят в заблуждение людей, не искушенных в математике. Дело в том, что умножение абсолютных величин эквивалентно сложению этих величин в децибелах. Например, число 2 соответствует 3 децибелам. Соответственно, усиление 8000 * 2= 16000 в децибелах будет равно 39дБ+3 дБ = 42 дБ. Поэтому иногда возникает вопрос: почему две антенны сильно отличаются по размеру, а их усиление выражается столь «близкими» числами. На самом деле разница всего в 3 дБ соответствует отличию в 2 раза, разница в 6 дБ — в 4 раза и т. д.

Коэффициент усиления — важнейший параметр антенны, однако, выбирая антенну по спецификации, не стоит даже обращать на него внимания. Дело в том, что никто из производителей антенн для индивидуального приема не измеряет реальные коэффициенты усиления. Коэффициент усиления, указанный в спецификации, рассчитывается по формуле, приведенной выше, по диаметру и длине волны. Другие факторы, в первую очередь — качество изготовления, при этом не учитываются, а коэффициент h каждый производитель выбирает «на глазок» (точнее, как совесть позволит) в пределах 0.5 — 0.65. В результате может оказаться, что по бумагам усиление хорошей антенны меньше, чем усиление не очень хорошей антенны такого же диаметра.

Ширина основного лепестка диаграммы направленности антенны на уровне половинного усиления, или на уровне (—3) дБ — это угол вокруг электрической оси антенны, в пределах которого усиление антенны не меньше, чем половина максимального. Другими словами, если повернуть антенну от направления на спутник на половину этого угла, сигнал уменьшится вдвое. Ширина основного лепестка прямо связана с диаметром, длиной волны и усилением. Для расчета можно пользоваться упрощенной формулой:
O = 70 * A / D
где: O — ширина основного лепестка диаграммы направленности антенны на уровне половинного усиления в градусах.

15

Из формулы видно, что основной лепесток диаграммы направленности спутниковой антенны очень узкий: например, у антенны 90 см в диапазоне Ки 0 05 = 1.9 градуса. Это означает, что антенна должна быть наведена на спутник с высокой точностью, ошибка менее одного углового градуса приведет к снижению сигнала вдвое. Из формулы также видно, что ширина основного лепестка прямо пропорционально длине волны. В диапазоне С ширина лепестка втрое больше, чем в диапазоне Ки, поэтому настраивать антенны на спутники диапазона С легче, требуется меньшая точность. С другой стороны, ширина основного лепестка обратно пропорциональна диаметру антенны. Неопытные настройщики считают, что большую антенну легче настроить, чем маленькую. На самом деле все наоборот: чем больше диаметр антенны и ее усиление, тем уже основной лепесток диаграммы направленности. Значит, большой антенной труднее найти спутник, а настраивать ее надо точнее, чем маленькую.

Источник

В помощь изучающему электронику

Данный справочник собран из разных источников. Но на его создание подтолкнула небольшая книжка «Массовой радиобиблиотеки» изданная в 1964 году, как перевод книги О. Кронегера в ГДР в 1961 году. Не смотря на такую ее древность, она является моей настольной книгой (наряду с несколькими другими справочниками). Думаю время над такими книгами не властно, потому что основы физики, электро и радиотехники (электроники) незыблемы и вечны.

Основные параметры передающих антенн

RΣ = PΣ / Ia

RA = RΣ + Rп

η = RΣ / (RΣ + Rп)

D = 41253 / Ф0 θ0

Параметры приемных антенн

— величина, на которую нужно умножить напряженность электрического поля в точке приема, чтобы получить э. д. с., развиваемую антенной. hд зависит от типа антенны и ее относительных размеров (по отношению к длине волны). Физически hд равна высоте воображаемой антенны, обладающей одинаковой с реальной антенной способностью принимать радиоволны, но в которой ток по всей длине имеет постоянное значение, равное току в пучности реальной антенны IАп (рис.1).

Понятием «действующая высота» удобно пользоваться при расчете одновибраторных антенн длиной не более λ/4.

Эффективная площадь антенны Аэфф определяет ту часть площади фронта плоской волны, с которой снимает энергию антенна. Понятие эффективная площадь используется при расчете многовибраторных и других сложных антенн (это понятие может быть применено и к одновибраторной антенне).

Рис1. Действующая высота антенны.

D = 4π Aэфф / λ 2

PA = (E 2 o Aэфф) / 120 π

G = ηAv D

Вибраторные антенны

D = 5 (n + 1)

Рамочные антенны

n lw π cos φE

Приемные ферритовые антенны

е — э. д. с., наведенная в антенне;

Q — добротность антенного контура,

Согласование антенны со входом первого каскада приемника обычно осуществляется частичным включением антенного контура при ламповом входе и катушкой связи при транзисторном входе. Индуктивная связь является более гибкой, поскольку, перемещая катушку связи, можно менять связь в широких пределах.
Правильный выбор связи играет особо важную роль в транзисторных приемниках ввиду низкого входного сопротивления транзисторных каскадов. Для повышения чувствительности транзисторного приемника (за счет более эффективного использования ферритовой антенны) антенну подключают через эмиттерный повторитель, обладающий высоким входным сопротивлением.
Расчет ферритовой антенны (рис. 6) состоит в определении количества витков антенной катушки.

Требуемую индуктивность антенной катушки находят по формуле:

Lк = 2,53 10 4 / f 2 max Cmin мкгн

Рис. 6. Ферритовая антенна.
1-ферритовый стержень, 2-Антенная катушка, 3-катушка связи, х-смещение центра катушки относительно центра сердечника.

Для наиболее простой односекционной антенной катушки со сплошной намоткой количество витков:

Коэффициент формы L’ зависит от отношения длины катушки к ее диаметру (рис.7).

Коэффициент μк определяют как произведение четырех эмпирических коэффициентов

Сопротивление излучения связывает излучаемую антенной мощность с током, питающим антенну
Здесь РΣ мощность, излучаемая антенной, вт; Rиз—сопротивление излучения, ом; Ia — эффективное значение тока, а.

Величина RΣ зависит от чипа антенны, ее размеров (по отношению к длине волны) и точки подключения питающего фидера. В общем случае сопротивление излучения имеет комплексный характер, т. е., кроме активной составляющей, имеет и реактивную Хиз.

Полное активное сопротивление антенны RA складывается из сопротивления излучения R Σ и сопротивления потерь Rn

Коэффициент полезного действия (к. п. д.) η антенны

— отношение излучаемой мощности к подводимой

К. п. д. большинства типов настроенных передающих антенн близок к единице.
Диаграмма направленности антенны

— зависимость напряженности поля в удаленной Точке от направления. Обычно диаграмма направленности снимается в двух плоскостях — горизонтальной и вертикальной.

Для оценки направленности антенны в какой-либо плоскости пользуются понятием ширины диаграммы направленности, понимая под этим ширину основного лепестка, отсчитанную по уровню 0,7 напряженности поля (или по уровню 0,5 мощности).

Коэффициент направленного действия (КНД) антенны D — число, показывающее во сколько раз нужно увеличить мощность передатчика, чтобы в точке, лежащей на заданном удалении по направлению максимального излучения, получить такую же напряженность поля с помощью ненаправленной антенны. КНД однозначно определяется пространственной диаграммой направленности антенны.

Если известна ширина диаграммы направленности антенны в горизонтальной и вертикальной плоскостях, то КНД находят по следующей приближенной формуле:

где:

Ф0—направленность антенны в горизонтальной плоскости, °

θо— направленность антенны в вертикальной плоскости, °.

G =η D

Частотная характеристика антенны и полоса пропускаемых частот характеризуют способность антенны работать в диапазоне частот. Частотной характеристикой называют зависимость тока, питающего антенну, от частоты, а полосой пропускания — область частот, где ток не падает ниже уровня 0,7 от своего максимального значения.
A1o
Эффективная площадь антенны и КНД связаны следующей зависимостью:
Где:

Мощность сигнала на входе приемника, согласованного с антенной, равна;

где:

Аэфф—эффективная площадь антенны, м 2 ;

—зависимость э.д. с. антенны от направления прихода волны. Ширина диаграммы направленности—угол, внутри которого э. д. с. антенны не падает ниже уровня 0,7 от своего максимального значения.

Коэффициент полезного действия ηA

—отношение мощности, снимаемой с антенны, к мощности, получаемой антенной от электромагнитной волны.

Коэффициент направленного действия (КНД) антенны D

— число, показывающее, во сколько раз мощность, снимаемая с антенны, превышает мощность, которую можно было бы получить в данном случае с помощью ненаправленной антенны, имеющей такой же к. п. д.

Величина КНД полностью определяется пространственной диаграммой направленности антенны.

Коэффициент усиления антенны по мощности G

— число, показывающее, во сколько раз мощность, снимаемая с антенны, превышает мощность, которая могла бы быть снята в этих же ^условиях с ненаправленной антенны без потерь. Как и для передающей антенны,

Входное сопротивление антенны ZA

— сопротивление антенны на рабочей частоте в точках подключения. В общем случае ZA (так же, как и сопротивление излучения передающей антенны) имеет как активную, так и реактивную составляющие.

Частотная характеристика антенны

— зависимость входного сопротивления антенны от частоты.

Для антенн существует принцип взаимности, согласно которому одна и та же антенна при работе на передачу и прием обладает одинаковыми характеристиками (КНД, к. п. д., диаграмма направленности и т. д.). При этом предполагается, что сохраняется способ подключения к антенне.

Основные данные простых вибраторных антенн приведены в табл. IX.1. Антенна типа «волновой канал» состоит из активного вибратора, рефлектора и нескольких директоров. Обладает большой направленностью вдоль оси (по направлению от активного вибратора к директорам).
A9o

Рис. 2 Антенна типа «Волновой канал»

Рекомендуемые размеры вибраторов и расстояний между ними приведены на рис. 2. Окончательная подгонка размеров производится экспериментально. Для уменьшения габаритов можно исключить два передних директора. Увеличение количества директоров свыше тоех малоэффективно.

Коэффициент направленного действия антенны «волновой канал» определяется по приближенной формуле

где n — число директоров.
Рамочная антенна (рис. IX.3) представляет собой плоскую катушку произвольного поперечного сечения.

Обычно общая длина провода рамочной антенны мала по сравнению с длиной волны

где:

е — э. д. с., наводимая по рамке, в;

S — площадь рамки, м 2 ;

Е — напряженность поля, в/м;

φ— угол между направлением приема и плоскостью рамки, °,

RΣ =31200 (nS/λ 2 ) 2 ом

Обычно R Σ очень мало, а поэтому к. п. д. системы низок. Рамочная антенна, как правило, применяется только для приема.
Ферритовые антенны широко применяются в малогабаритных радиоприемных устройствах ДВ и СВ диапазонов, а также находят применение в диапазонах KB и УКВ.

Ферритовая антенна состоит из ферритового стержня, на котором размещена антенная катушка, выполняющая роль индуктивной ветви входного контура. По принципу действия фердитовая антенна является магнитной, аналогично рамочной антенне.

Эффективность ферритовой антенны ДВ и СВ диапазонов сравнима со штырем длиной 1—2 м.

Ферритовая антенна обладает направленностью, соответствующей рамочной антенне (см. рис.4).

Расчет и конструирование ферритовой антенны. Выбор марки феррита производится в соответствии с диапазоном частот:

ДВ μ = 1000—2000;

УКВ μ = 10—50.

Провод — одножильный или литцендрат (на СВ). Тип намотки — обычно однорядная сплошная (виток к витку). Следует стремиться к максимальной добротности антенной катушки, поскольку это определяет эффективность ферритовой антенны.

Напряжение на входном контуре

где:

fmax — максимальная частота диапазона, Мгц;

Сп — минимальная емкость контура, пф.

A11o
A12o A13o
Рис.7 График для определения коэффициента формы катушки L’ Рис. 8. График для опрежеления коэффициента mL
A17o A14o
Рис. 9 График для определения
коэффициента pL
Рис. 10 График для определения действительной магнитной проницаемости ферритового стержня.

Основные формулы описывающие параметры вибраторных антенн

Оглавление

Основные понятия. Замкнутая и разветвленная цепи постоянного тока

Основные зависимости, Последовательный колебательный контур, Параллельный колебательный контур

Входная цепь приемника

10.1 Аттенюаторы, 10.2 Согласование источника с нагрузкой по мощности, току и напряжению

Основные параметры передающих антенн, Параметры приемных антенн, Вибраторные антенны, Рамочные антенны, Приемные ферритовые антенны, Формулы для расчета вибраторных антенн

Источник

Комфорт
Adblock
detector