Формула бинома ньютона свойства биномиальных коэффициентов треугольник паскаля

Бином Ньютона.

Навигация по странице.

Коэффициенты бинома Ньютона, свойства биномиальных коэффициентов, треугольник Паскаля.

Треугольник Паскаля.

Биномиальные коэффициенты для различных n удобно представлять в виде таблицы, которая называется арифметический треугольник Паскаля. В общем виде треугольник Паскаля имеет следующий вид:
010

Треугольник Паскаля чаще встречается в виде значений коэффициентов бинома Ньютона для натуральных n :

011

Боковые стороны треугольника Паскаля состоят из единиц. Внутри треугольника Паскаля стоят числа, получающиеся сложением двух соответствующих чисел над ним. Например, значение десять (выделено красным) получено как сумма четверки и шестерки (выделены голубым). Это правило справедливо для всех внутренних чисел, составляющих треугольник Паскаля, и объясняется свойствами коэффициентов бинома Ньютона.

Свойства биномиальных коэффициентов.

Первые два свойства являются свойствами числа сочетаний.

Доказательство формулы бинома Ньютона.

Приведем доказательство формулы бинома Ньютона, то есть докажем справедливость равенства 001.

Получили верное равенство.

Докажем, что верно равенство 001, основываясь на предположении второго пункта.

Поехали!
021

Раскрываем скобки
022

Группируем слагаемые
023

Так как 024и 025, то 026; так как 027и 028, то 029; более того, используя свойство сочетаний 030, получим
031

Подставив эти результаты в полученное выше равенство
023
придем к формуле бинома Ньютона 001.

Этим доказана формула бинома Ньютона.

Рассмотрим подробные решения примеров, в которых применяется формула бинома Ньютона.

Напишите разложение выражения (a+b) 5 по формуле бинома Ньютона.

Найдите коэффициент бинома Ньютона для шестого члена разложения выражения 008.

В заключении рассмотрим пример, в котором использование бинома Ньютона позволяет доказать делимость выражения на заданное число.

Доказать, что значение выражения 016, где n – натуральное число, делится на 16 без остатка.

Представим первое слагаемое выражение как 017и воспользуемся формулой бинома Ньютона:
018

Источник

Бином Ньютона и треугольник Паскаля

Сегодня, как и лет тридцать-сорок назад, абитуриенты на вступительных экзаменах в вуз традиционно опасаются вытянуть билет с вопросом о биноме Ньютона. (Автор формулы — великий английский физик, математик, астроном и философ сэр Исаак Ньютон.) Дело не только в том, что формула кажется сложной. Изучение её то включали в программу средней школы, то выводили за рамки основного курса, но в серьёзных вузах экзаменаторы спрашивали и продолжают спрашивать о биноме Ньютона.

На самом деле бояться тут особенно нечего. Бином Ньютона — формула разложения произвольной натуральной степени двучлена \( (a+b)^n \) в многочлен. Каждый из нас знает наизусть формулы «квадрата суммы» \( (a+b)^2 \) и «куба суммы» \( (a+b)^3 \), но при увеличении показателя степени с определением коэффициентов при членах многочлена начинаются трудности. Чтобы не совершить ошибку и применяется формула бинома Ньютона:

В более общем виде формула коэффициентов в биноме записывается так:

Напомним, что факториал — произведение натуральных чисел от 1 до n, то есть \( 1*2*3*\ldots*n \) — обозначается n!, например, \( 4! = 1*2*3*4 = 24 \).

Запомнить формулу действительно непросто. Но попытаемся её проанализировать. Видно, что в любом многочлене присутствуют a n и b n с коэффициентами 1. Ясно также, что всякий иной член многочлена выглядит как произведение определённых степеней каждого из слагаемых двучлена (a+b), причём сумма степеней всегда равна n. Например, в выражении \[ (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 \] сумма степеней сомножителей во всех членах равна трём (3, 2+1, 1+2, 3). То же самое справедливо и для любой другой степени. Вопрос лишь в том, какие коэффициенты следует ставить при членах.

Видимо, для того чтобы облегчить труд школяров и студентов, великий французский математик и физик Блез Паскаль триста пятьдесят лет назад придумал специальный инструмент для определения этих самых коэффициентов — «треугольник Паскаля».

Строится он следующим образом.В вершине треугольника пишем 1. Единица соответствует выражению \( (a+b)^0, \) поскольку любое число, возведённое в нулевую степень, даёт единицу. Достраивая треугольник, ниже пишем ещё по единице. Это коэффициенты разложения того же двучлена, возведённого в первую степень:\( (a+b)^1 = a+b. \) Идём дальше. Стороны треугольника образуют единицы, а между ними — сумма двух единичек, находящихся сверху, то есть 2. Это и есть коэффициенты трёхчлена «квадрат суммы»:

Следующий ряд, как и предыдущий, начинается и заканчивается единицами, а между ними — суммы цифр, находящихся сверху: 1, 3, 3, 1. Мы получили коэффициенты разложения « куба суммы ». Ряд коэффициентов двучлена четвёртой степени составят 1, 4, 6, 4, 1 и так далее.

Для примера с помощью треугольника Паскаля разложим в многочлен сумму двучленов в шестой степени:

\[ (a + b)^6 = a^6+6a^5b + 15a^4b^2+20a^3b^3 + 15a^2b^4 + 6ab^5 + b^6. \]

Всё очень несложно и запоминается на всю жизнь. Кстати, самостоятельно вспомнить и вывести формулу бинома Ньютона, нарисовав на черновике треугольник Паскаля, тоже намного проще.

Некоторые историки науки приписывают Блезу Паскалю авторство не только треугольника, позволяющего находить биномиальные коэффициенты, но и самой формулы бинома. Они считают, что Паскаль вывел её несколько раньше Ньютона, а тот лишь обобщил формулу для разных показателей степеней.

Источник

Бином Ньютона и треугольник Паскаля

Некоторые правила сокращенного умножения были известны еще около 4 тыс. лет назад. Их знали вавилоняне, греки и некоторые другие народы древности. В Древней Греции жили и работали замечательные ученые математики, философы, астрономы, физики, которые всю свою жизнь отдали служению науке. Начиная с VI века до н. э., у древнегреческих математиков встречаются общие утверждения о тождественном преобразовании многочленов, применении формул и правил, которые установил древнегреческий ученый Пифагор, живший в 6 в. до н.э.

Тогда было принято все алгебраические утверждения выражать в геометрической форме. Особенно широко алгебраическими тождествами пользовался в 3 в до н.э. древнегреческий геометр Евклид. В своих «Началах», состоящих из 13 книг, вторую он посвятил алгебраическим тождествам (всего тождеств было 10). У древних греков величины обозначались не числами или буквами, а отрезками прямых. Они говорили не «а», а «квадрат на отрезке а», не «ав», а «прямоугольник, содержащийся между отрезками а и в». Например, тождество ( а + в )=а + 2ав + в во второй книге «Начал» Евклида формулировалось так: « Если прямая линия ( имеется в виду отрезок) как- либо рассечена, то квадрат на всей прямой равен квадратам на отрезках вместе с дважды взятым прямоугольником, заключенным между отрезками». Доказательство опиралось на геометрические соображения.

Первым ученым, который отказался от геометрических способов выражения и перешел к алгебраическим уравнениям, был древнегреческий ученый-математик, живший в III веке до н. э. Диофант Александрийский. В своей книге «Арифметика» Диофант формулы квадрата суммы, квадрата разности и разности квадратов рассматривал уже с арифметической точки зрения. Ну а современную символику алгебраические тождества получили благодаря двум математикам, а именно Виету и Декарту(16 век).

Также вопросами исследования многочленов занимался и иранский поэт, математик, астроном, философ живший в XI-XII вв. (по европейскому летоисчислению) в Персии Омар Хайям. Первый математический трактат Омара Хайяма «Трудности арифметики» пока не обнаружен. Из других работ известно, что он содержит сведенья о разработанном Хайямом общем приеме извлечения корня любой степени с натуральным показателем «методом индийцев», т.е. с помощью правил (а+b)2 и (a+b)3. Основываясь на известных фактах, ученые предполагают, что Хайям открыл формулу возведения двучлена a+b в степень n. (К сожалению, результаты работы математиков Востока были неизвестны в Европе до XVII в., поэтому их пришлось открывать заново.)

На современном уровне развития математики данные формулы были обоснованы Исааком Ньютоном. Формула, которая позволяет выписывать разложение алгебраической суммы двух слагаемых произвольной степени, впервые была предложена Ньютоном в 1664–1665 г. и получила название бинома Ньютона. Эта формула была известна задолго до Ньютона многим ученым разных времен и стран, в том числе ал-Караджи (5 в.), ат-Туси и ал-Каши, Тарталье, Ферма, Паскалю. Строгое доказательство формулы для натурального n было дано в 1713 г. опять-таки не Ньютоном, а Якобом Бернулли. В чем же заслуга Ньютона, имя которого носит эта формула? В том, что он распространил ее на любое действительное n, т. е. он показал, что формула верна и тогда, когда n является рациональным или иррациональным, положительным или отрицательным числом. В настоящее время употребление дробных, отрицательных и иррациональных показателей кажется каждому старшекласснику несложным делом, однако в 17 веке Ньютон был первым человеком в мире, начавшим систематически употреблять в алгебре показатели, отличные от целых положительных. Скромное на первый взгляд дело – распространение этой формулы на действительные показатели – имело огромное значение для развития математики

При небольших значениях n коэффициенты можно найти из треугольника Паскаля. Блез Паскаль триста пятьдесят лет назад придумал специальный инструмент для определения этих самых коэффициентов — «треугольник Паскаля».

Бином Ньютона

Для любого натурального числа n справедлива формула, называемая формулой бинома Ньютона

(a+b)2=C20a + C21ab + C22b2

Коэффициенты формулы называются биномиальными коэффициентами. Если n – положительное целое число, то коэффициенты обращаются в нуль при любом k > n, поэтому разложение содержит лишь конечное число членов. Во всех остальных случаях разложение представляет собой бесконечный (биномиальный) ряд.

Свойства бинома Ньютона:

Треугольник Паскаля

Строится он следующим образом. В вершине треугольника пишем 1. Единица соответствует выражению (a+b), поскольку любое число, возведённое в нулевую степень, даёт единицу. Достраивая треугольник, ниже пишем ещё по единице. Это коэффициенты разложения того же двучлена, возведённого в первую степень: (a+b)=a+ b. Идём дальше. Стороны треугольника образуют единицы, а между ними — сумма двух единичек, находящихся сверху, то есть 2. Это и есть коэффициенты трёхчлена «квадрат суммы»: a+2ab+b.

Следующий ряд, как и предыдущий, начинается и заканчивается единицами, а между ними — суммы цифр, находящихся сверху: 1, 3, 3, 1. Мы получили коэффициенты разложения «куба суммы». Ряд коэффициентов двучлена четвёртой степени составят 1, 4, 6, 4, 1 и так далее.

Свойства треугольника Паскаля:

Источник

Лекция на тему «Бином Ньютона. Биномиальные коэффициенты и треугольник Паскаля»

Новые аудиокурсы повышения квалификации для педагогов

Слушайте учебный материал в удобное для Вас время в любом месте

откроется в новом окне

Выдаем Удостоверение установленного образца:

0229 00081878 a61e4e0c

«IQ и EQ как основа успешного обучения»

Раздел 1. Комбинаторика.

Тема: Бином Ньютона. Биномиальные коэффициенты и треугольник Паскаля.

дать понятие «Бином Ньютона»;

вывести формулу бинома Ньютона, рассмотреть свойства его разложения;

ввести общую формулу вычисления биномиальных коэффициентов, проследить закономерность их появления в треугольнике Паскаля.

Прикладная комбинаторная математика

Энциклопедический словарь юного математика/Сост. А.П. Савин. – М.: Педагогика, 1985г.

Формулу для квадрата двучлена

знали, еще ма­тематики Древнего Вавилона, а древнегрече­ские математики знали ее геометрическое ис­толкование .

Если умножить обе части этой формулы на ( а + b ) и раскрыть скобки, то получим:

Аналогичный шаг может привести к следующей формуле:

Легко заметить закон образования коэффи­циентов: коэффициент 4 при a 3 b есть сумма коэффициентов 3 и 1 при a 2 b и а 3 . Аналогич­но, коэффициент 6 при a 2 b 2 является суммой (3 + 3) коэффициентов при ab 2 и a 2 b . По то­му же закону получаем и коэффициент 4 при ab 3 .

Отсюда следует, что коэффициенты С k n в равенстве:

являются членами ( n +1)-й строки треуголь­ника Паскаля .

2. Биномиальные коэффициенты.

Первое дошедшее до нас описание формулы бинома Ньютона содержится в по­явившейся в 1265 г. книге среднеазиатского математика ат-Туси, где дана таблица чисел С k n ( биномиальных коэффициентов ) до п = 12 включительно.

Европейские ученые познакомились с фор­мулой бинома Ньютона, по-видимому, через восточных математиков. Детальное изучение свойств биномиальных коэффициентов про­вел французский математик и философ Блез Па­скаль в 1654 г. Еще до этого было известно, что числа

hello html 2a31b5b0

hello html m53d4ecadявляются в то же время числами «сочетаний без повторений» из n элементов по k .

В 1664-1665 гг. И. Ньютон установил, что формула (1) обобщается на случай про­извольных (дробных и отрицательных) пока­зателей, но при этом получается сумма из бе­сконечного множества слагаемых. Именно он показал, что при | х |

hello html 15ad8a12(2)

При п = — 1 формула (2) превращается в из­вестную формулу для суммы бесконечной гео­метрической прогрессии:

hello html 48632e7c

На рис. 1 изображено несколько первых строк числового треугольника, образованного по следующему правилу: по краям каждой строки стоят единицы, а каждое из остальных чисел равно сумме двух стоящих над ним чи­сел предыдущей строки.

hello html 2b6298d2По этому правилу легко выписывать одну за другой новые стро­ки этого треугольника. Именно в такой фор­ме он приведен в «Трактате об арифметиче­ском треугольнике» французского математика Б. Паскаля (1623-1662), опубликованном в 1665 г., уже после смерти автора.

Популярность чисел, составляющих треу­гольник Паскаля, не удивительна: они возни­кают в самых естественных задачах алгебры, комбинаторики, теории вероятностей, матема­тического анализа, теории чисел.

Сколько различных k -элементных множеств (сочетаний) можно образовать из данных п элементов?

Каковы коэффициенты многочлена (1 +х) n ?

Сколько существует строчек из п единиц и нулей, в которых ровно k единиц?

Сколькими разными путями можно спу­ститься из верхней точки А на рис 2. в k -й перекресток n -го ряда?

hello html m7b8c1b91

На все эти вопросы ответ дают числа С k n , треугольника Паскаля. Обозначение С k n пред­полагает, что верхняя строка треугольника Паскаля состоит из одного числа С 0 0 = 1, сле­дующая (первая)-из двух чисел С 0 1 = С 1 1 =1, и вообще п-я строка состоит из п+1 чисел:

hello html 3c1cf008

hello html m5d2f0ae4

В «равнобедренной» форме треугольника Паскаля на рис. 1 очевидно свойство симмет­рии каждой строки С k n = С n k n ; при этом посе­редине строки стоит самое большое число hello html 38524095(если п четно) или два самых больших числа hello html 73655cf3(если п нечетно), а к краям числа монотонно убывают.

Если записать тот же треугольник в «пря­моугольной» форме (рис.3), то целый ряд свойств треугольника Паскаля, связанный с суммами его чисел, будет удобнее наблю­дать. В частности, сумма нескольких первых чисел каждого столбца равна идущему за ни­ми числу следующего столбца:

hello html m53d4ecad hello html 541d5354

hello html 4dfe9fa8

Суммы чисел по «восходящим» (зеленым) диагоналям на рисунке 3 равны последова­тельным числам Фибоначчи.

Для применений в теории вероятностей особенно важны асимптотические формулы для чисел треугольника Паскаля, т.е. прибли­женные оценки этих чисел при больших п.

Источник

Алгебра и начала математического анализа. 11 класс

Конспект урока

Алгебра и начала математического анализа, 11 класс

Урок №31. Сочетания без повторений. Бином Ньютона

Перечень вопросов, рассматриваемых в теме

1) понятие сочетания без повторения и их свойства;

2) правила подсчета числа сочетаний из n-элементов по m без повторений;

4) треугольник Паскаля.

Сочетаниями из n элементов по m в каждом (m ≤ n) называются такие соединения, каждое из которых содержит m элементов, взятых из данных n различных элементов, и которые отличаются одно от другого по крайней мере одним элементом.

Число всевозможных сочетаний из n различных элементов по m элементов обозначают e1213d71 8329 4b96 95eb e0d8bb1f7caa

Формула для подсчёта числа сочетаний:

6109b1fc 592e 4a6e bd77 43d6dada0ee8

Бином Ньютона – формула разложения произвольной натуральной степени двучлена в многочлен.

Числа 7de008a3 695f 4aa2 98d9 a078f4d554dcявляются коэффициентами в формуле бинома Ньютона:

1a893650 2977 4490 9939 02a8e691730d

Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

Общим термином «соединения» в комбинаторике называют три вида комбинаций, составляемых из некоторого числа различных элементов, принадлежащих одному и тому же множеству. Ранее уже рассматривались два вида комбинаций. Это перестановки и размещения. В данных соединениях важен порядок размещения элементов. В случае, когда этот порядок не важен, то мы имеем дело с сочетаниями.

Сочетаниями из n элементов по m в каждом (m ≤ n ) называются такие соединения, каждое из которых содержит m элементов, взятых из данных n различных элементов, и которые отличаются одно от другого по крайней мере одним элементом.

Иногда такие сочетания называют сочетаниями без повторений.

Число всевозможных сочетаний из из n элементов по m элементов обозначают fee090cb f8e1 4541 8ad2 04db1ac7f6c7

Формула для подсчёта числа сочетаний:

1199a84d 1e13 475a b1ac abe7ff5c2711

Используя данную формулу можно отметить основные свойства сочетаний.

Простейшие свойства сочетаний:

1) 7e61d0ff ee2e 403b b54e 70b55b3c8895

2) e31aa99e 67bc 44f1 b922 37efddadfd64

3) b5462341 cf87 4c68 aa50 f91586aef908

Доказательства свойства сочетаний

1) 7826ca6e 2803 4251 a3dc 7cfe0f3d68bd

1253ee20 1b95 4a06 924a d4fcf5f5a1f9

2) 047a6a5d 3874 46ec 8891 ee2afc402a1f

1cf61e0a 79f4 4b9e a798 62790fb37f9d

3) 84116eb1 3450 4eb6 b0fa fbf4c6bda43b

e80fd60c be2c 442a aaf1 11cb1d79eb60

a90bdf92 2307 4949 a909 5285d39f7333

При возведении суммы или разности двух чисел во вторую или третью степень мы пользовались формулами сокращенного умножения, которые являются частным случаем бинома Ньютона.

Бином Ньютона – формула разложения произвольной натуральной степени двучлена в многочлен.

Числа 5d07cbf2 02df 4b95 b88f a72cf0081ce8являются коэффициентами в формуле бинома Ньютона:

df6b7936 4d50 451d 988c 672950de8ba4

Для более простого подсчета коэффициентов Бинома Ньютона для невысоких степеней удобно пользоваться треугольником Паскаля:

36bf3c4b ee93 4450 94ea a0484832aec7977ed2b0 562a 41e0 826a 033b2805b9bd

По бокам в каждой строчки имеется коэффициент, равный единице. Все средние коэффициенты считаются, как сумма верхних, которые находятся над ними.

Практическая значимость треугольника Паскаля заключается в том, что с его помощью можно запросто восстанавливать по памяти не только известные формулы квадратов суммы и разности, но и формулы куба суммы (разности), четвертой степени и выше.

Не трудно заметить, что строки треугольника симметричны относительно вертикальной оси. Это еще одно замечательное свойство треугольника Паскаля

Исаак Ньютон (1642-1727 гг.) – выдающийся английский ученый, один из создателей классической физики. Биография Ньютона богата во всех смыслах этого слова. Он сделал немало открытий в области физики, астрономии, механике и математике. Ньютон является автором фундаментального труда «Математические начала натуральной философии», в котором он изложил закон всемирного тяготения и три закона механики, ставшие основой классической механики. Разработал дифференциальное и интегральное исчисления, теорию цвета, заложил основы современной физической оптики, создал многие другие математические и физические теории.

А при чем же здесь бином Ньютона и биномиальные коэффициенты? Формула

fd395889 b291 45f9 a644 149f2f68c271

была известна ещё индийским и исламским математикам; Ньютон вывел формулу бинома для более общего случая, когда показатель степени произвольное рациональное число (возможно, отрицательное).

Примеры и разбор решения заданий тренировочного модуля

В вазе лежат двенадцать конфет, четыре из которых шоколадные, а остальные карамель. Вы хотите угоститься, выбрав две шоколадные и три карамельные конфеты. Сколькими способами вы можете это сделать?

Мы имеем два события. Это выбор шоколадных и выбор карамельных конфет. Порядок конфет не важен. Поэтому мы можем использовать формулу сочетания для каждого из событий. Так, как шоколадных конфет всего четыре, а выбрать мы хотим две, то это можно сделать способами 06f2637b 97f9 442a 86fb ded60b5d6649.

1) e09d77d9 826f 4a94 98ec 21fbf81a06e4

Теперь посчитаем количество выбора карамельных конфет. Их общее количество в вазе 12-4=8, а выбрать мы хотим три. Рассчитаем сочетание из восьми по три.

2) bdf7b396 1486 4363 8c76 2bc98d424c26

События выбора разных видов конфет между собой независимы, поэтому по правилу умножения получаем

3) 772f8f02 0df6 4e86 a003 4fb1be38d90d

Представить разложение двучлена в n степени в виде многочлена, где n=0, 1, 2, …,5

Первые четыре разложения мы хорошо умеем делать, используя формулы квадрата и куба разности.

7e7b0874 0a3e 4323 a5b3 f4cdb3fe53d2

67b471f3 4f7f 42a2 9c2d 5e89befee68e

ecac2fb9 094e 469f a3f4 a02e58e36f84

20dfd4f1 4a28 4e04 8cff cac44583d931

А для представления бинома четвертой и пятой степени воспользуемся треугольником Паскаля.

Источник

Комфорт
Adblock
detector