Этапы секвенирования с использованием метода терминаторов

Этапы секвенирования.

1. Проведение ПЦР. Позволяет получить множественные копии небольших фрагментов ДНК размером от 300 до 1000 нуклеотидов. Секвенирование больших фрагментов затруднено, так как при проведении их электрофореза невозможно выявить фрагменты, отличающиеся в один нуклеотид.

2. Очистка амплифицированных фрагментов ДНК. Проводят очистку ампликонов от шлаков – остатков ПЦР реакции (праймеров, несвязавшихся нуклеотидов).

3. Секвенирование. Проводят ряд последовательных стадий (рис. 38):

а) приготовление реакционной смеси, которая содержит:

— ДНК-полимеразу и буфер для неё,

— дезоксинуклеотидтрифосфаты (дАТФ, дТТФ, дГТФ, дЦТФ),

— меченые флюоресцентной меткой дидезоксинуклеотиды, которые обрывают синтез цепочки ДНК, так как лишены 3′-OH группы, необходимой для образования мостика между двумя нуклеотидами;

б) проведение реакции ПЦР-секвенирования;

image099Рис. 38.Этапы секвенирования

1. С помощью ПЦР получают множественные копии изучаемого гена, размер которых не должен превышать 1000 п. о. Образуемые в ПЦР ампликоны выявляют электрофорезом. 2. Ампликоны очищают от ПЦР-шлаков (праймеров, нуклеотидов).

image102

3а, б. С помощью флуоресцентно меченых терминаторов синтеза ДНК-цепи, получают множество фрагментов ДНК, синтез которых оборван на аденине, тимине, гуанине, цитозине. Количество получаемых фрагментов ДНК равно сумме А, Т, Г, Ц, присутствующих в секвенируемом фрагменте. 3в. Проводят электрофорез в денатурирующем полиакриламидном геле, в котором разделяются фрагменты ДНК, отличающиеся в один нуклеотид.
А Ц Г Т А Ц Г Т 1 1 1 1 2 2 2 2 Образец 1 Образец 2

Дата добавления: 2015-02-23 ; просмотров: 1957 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Секвенирование ДНК по Сэнгеру: метод «терминаторов»

Рисунок 3 Реакция селективного расщепления по остаткам гуанина

image012

Рисунок 4 Реакция селективного расщепления по остаткам тимидина и цитозина.

Секвенирование по Сэнгеру

«Плюс-минус» метод секвенирования ДНК Один из наиболее популярных методов секвенирования обязан своим появлением английскому биофизику Фредерику Сэнгеру (1918–2013) — единственному ученому в истории мировой науки, получившему сразу две Нобелевские премии по химии (в 1958 и 1980 годах). Первую премию присудили за установление структур белков, особенно инсулина, а вторую награду ему вручили в том числе и за разработку методов определения первичной последовательности нуклеиновых кислот. Методику секвенирования ДНК с использованием радиоактивно меченых нуклеотидов и ДНК-полимеразы (или фрагмента Кленова ДНК-полимеразы I) предложили Сэнгер и его коллеги в 1977 году, причем с течением времени этот метод прошел несколько модификаций и к настоящему моменту считается золотым стандартом современного секвенирования. Первоначально Ф. Сэнгер и Алан Коулсон разработали так называемый «плюс-минус» метод секвенирования ДНК, который можно подразделить на две основные стадии: Полимеразная цепная реакция, в которой используется ДНК (например, ДНК человека), фермент (ДНК-полимераза), олигонуклеотидныепраймеры и смесь четырех дезоксинуклеотидов (dNTPs) (А, Т, G и C), причем один из дезоксинуклеотидов радиоактивно помечен по α-положению фосфата (32P). Очистка смеси амплифицированных фрагментов от дезоксинуклеозидтрифосфатов, не вступивших в реакцию (например, на колонках). Смесь делят на восемь равных частей (в разных пробирках). В «плюс»-системе проводят четыре ПЦР-реакции в присутствии каждого из четырех типов дезоксинуклеозидтрифосфатов; параллельно в «минус»-системе проводят четыре ПЦР-реакции в отсутствии каждого из них. Далее результаты визуализируют с помощью электрофореза, и определяют последовательность ДНК, исходя из того, что в «плюс»-системе терминация (прерывание) ПЦР происходит после конкретного dNTP, а в «минус»-системе — перед ним (рис. 4)

image014

Рисунок 4. «Плюс-минус» метод секвенирования ДНК, предложенный Ф. Сэнгером и А. Коулсоном

Секвенирование ДНК по Сэнгеру: метод «терминаторов»

Спустя пару лет Сэнгер с коллегами предложил еще один способ секвенирования, получивший название метода «терминаторов» или метода «обрыва цепи». Суть этого метода заключается в том, что в реакционную смесь добавляют аналоги привычных нуклеотидов (дидезоксинуклеозидтрифосфаты), включение которых в синтезируемую цепь приводит к невозможности ее дальнейшего синтеза (терминации), а по образовавшемуся «обломку» можно установить последнюю букву секвенируемого фрагмента ДНК (рис. 5)

image016

Рисунок 5. Метод «терминаторов»: используют ДНК-полимеразу, олигонуклеотидныепраймеры и смесь четырех дезоксинуклеотидов (dNTPs) (А, Т, G и C), один из которых радиоактивно помечен по α-положению фосфата (32P). В каждую из четырех реакций добавляется по одному 2’,3’-дидезоксинуклеозидтрифосфату (ddATP, ddTTP, ddCTP или ddGTP), которые терминируют дальнейшую реакцию (синтез комплементарной молекулы ДНК с матрицы) — таким образом в каждой пробирке образуется набор фрагментов ДНК разной длины, которые заканчиваются одним и тем же нуклеотидом. Затем полученные фрагменты визуализируют с помощью электрофореза и, сравнивая длины фрагментов из четырех реакций с ddATP, ddTTP, ddCTP или ddGTP, восстанавливают последовательность ДНК.

Автоматизированные модификации метода «терминаторов» активно применяют до сих пор в специальных приборах — секвенаторах. Открытие многочисленных флуоресцентных молекул позволило отказаться от использования радиоактивной метки и сделало возможным проведение реакции в одной пробирке. Реакционную смесь разделяют капиллярным электрофорезом, a выстроившиеся в синтезируемую цепочку ДНК меченые нуклеотиды затем регистрируют детекторами флуоресценции, предоставляя возможность считывать последовательность всего секвенируемого ДНК-фрагмента.

Пиросеквенирование— это метод секвенирования ДНК (определение последовательности нуклеотидов в молекуле ДНК), основанный на принципе «секвенирование путем синтеза». Метод «секвенирования путем синтеза» позволяет секвенировать одну цепь ДНК путем синтеза комплементарной цепи, при этом регистрируется присоединение каждого нуклеотида. В ходе реакции матрица ДНК иммобилизована, растворы нуклеотидов A, C, G и T добавляются и отмываются последовательно после каждого цикла секвенирования.

Метод пиросеквенирования основан на детекции активности фермента ДНК-полимеразы с другим хемилюминесцентным ферментом. Последовательность подачи реагентов в реакционную смесь, которые дают хемилюминесцентный сигнал, позволяет определить последовательность анализируемого участка ДНК.

Источник

390px Sanger sequencing.svg

СОДЕРЖАНИЕ

Метод

220px %D0%A4%D0%BB%D1%83%D0%BE%D1%80%D0%B5%D1%81%D1%86%D0%B5%D0%BD%D1%82%D0%BD%D1%8B%D0%B5 %D0%B4%D0%B8%D0%B4%D0%B5%D0%B7%D0%BE%D0%BA%D1%81%D0%B8%D1%82%D0%B5%D1%80%D0%BC%D0%B8%D0%BD%D0%B0%D1%82%D0%BE%D1%80%D1%8B %D0%A1%D0%B0%D0%BD%D0%B3%D0%B5%D1%80.svg

Sequencing

На изображении справа рентгеновская пленка подвергалась воздействию геля, а темные полосы соответствуют фрагментам ДНК разной длины. Темная полоса на дорожке указывает на фрагмент ДНК, который является результатом обрыва цепи после включения дидезоксинуклеотида (ddATP, ddGTP, ddCTP или ddTTP). Затем относительные положения различных полос на четырех дорожках снизу вверх используются для считывания последовательности ДНК.

220px DNA Sequencin 3 labeling methods

Технические варианты секвенирования с окончанием цепи включают мечение нуклеотидами, содержащими радиоактивный фосфор, для нанесения радиоактивной метки или использование праймера, меченного на 5′-конце флуоресцентным красителем. Секвенирование красителей и праймеров облегчает считывание в оптической системе для более быстрого и экономичного анализа и автоматизации. Более поздняя разработка Leroy Hood и соавторов флуоресцентно меченных ddNTP и праймеров заложила основу для автоматизированного высокопроизводительного секвенирования ДНК.

220px Radioactive Fluorescent Seq

Методы обрыва цепи значительно упростили секвенирование ДНК. Например, коммерчески доступны наборы на основе обрыва цепи, которые содержат реагенты, необходимые для секвенирования, предварительно разделенные на аликвоты и готовые к использованию. Ограничения включают неспецифическое связывание праймера с ДНК, влияющее на точное считывание последовательности ДНК, и вторичные структуры ДНК, влияющие на точность последовательности.

Секвенирование красителя-терминатора

220px CE Basic

Благодаря большей целесообразности и скорости секвенирование с использованием терминатора красителя в настоящее время является основой автоматизированного секвенирования. Его ограничения включают эффекты красителя из-за различий во включении меченных красителем терминаторов цепи во фрагмент ДНК, что приводит к неодинаковым высотам и формам пиков на электронной хроматограмме следа последовательности ДНК после капиллярного электрофореза (см. Рисунок слева).

Автоматизация и подготовка проб

220px Sanger sequencing read display

Вызовы

Общие проблемы секвенирования ДНК с помощью метода Сэнгера включают низкое качество первых 15-40 оснований последовательности из-за связывания праймеров и ухудшение качества следов секвенирования после 700-900 оснований. Программное обеспечение для вызова базы, такое как Phred, обычно обеспечивает оценку качества, чтобы помочь в обрезке низкокачественных областей последовательностей.

Современные методы позволяют непосредственно секвенировать только относительно короткие ( длиной 300-1000 нуклеотидов ) фрагменты ДНК за одну реакцию. Основным препятствием для секвенирования фрагментов ДНК, превышающих этот предел размера, является недостаточная способность разделения для разделения больших фрагментов ДНК, которые отличаются по длине только на один нуклеотид.

Микрофлюидное секвенирование по Сэнгеру

В настоящее время высокопроизводительное секвенирование генома включает фрагментирование генома на небольшие одноцепочечные части с последующей амплификацией фрагментов с помощью полимеразной цепной реакции (ПЦР). Приняв метод Сэнгера, каждый фрагмент ДНК необратимо обрывается с включением флуоресцентно меченного дидезокси-цепи нуклеотида, обрывающего цепь, тем самым образуя «лестницу» ДНК из фрагментов, каждый из которых отличается по длине на одно основание и несет специфичную для основания флуоресцентную метку на терминальная база. Затем амплифицированные лестницы оснований разделяют с помощью электрофореза на капиллярной матрице (CAE) с автоматическим in situ «финишным» обнаружением флуоресцентно меченных фрагментов оцДНК, что обеспечивает упорядоченную последовательность фрагментов. Эти считывания последовательностей затем собираются компьютером в перекрывающиеся или смежные последовательности (называемые «контиги»), которые напоминают полную геномную последовательность после полной сборки.

Методы Сэнгера позволяют получить длину считывания примерно 800 пар оснований (обычно 500-600 пар оснований для необогащенной ДНК). Более длинные считывания в методах Сэнгера демонстрируют значительные преимущества перед другими методами секвенирования, особенно с точки зрения секвенирования повторяющихся областей генома. Проблема данных коротко-считываемых последовательностей особенно актуальна при секвенировании новых геномов (de novo) и при секвенировании сильно перестроенных сегментов генома, обычно тех, которые наблюдаются в геномах рака или в областях хромосом, которые демонстрируют структурные вариации.

Применение технологий микрофлюидного секвенирования

Другие полезные приложения секвенирования ДНК включают в себя полиморфизм единичного нуклеотида обнаружения (СНП), однонитевой конформационный полиморфизм (SSCP) гетеродуплексный анализ и короткий тандемный повтор анализ (STR). Разрешение фрагментов ДНК в соответствии с различиями в размере и / или конформации является наиболее важным шагом в изучении этих особенностей генома.

Дизайн устройства

Чип секвенирования имеет четырехслойную конструкцию, состоящую из трех стеклянных пластин диаметром 100 мм (на которых микропроизводятся элементы устройства) и полидиметилсилоксановой (PDMS) мембраны. Реакционные камеры и каналы капиллярного электрофореза протравлены между двумя верхними стеклянными пластинами, которые термически связаны. Трехмерные межсоединения каналов и микроклапаны образованы ПДМС и стеклянной пластиной нижнего коллектора.

Устройство состоит из трех функциональных блоков, каждый из которых соответствует этапам секвенирования по Сэнгеру. Блок термоциклирования (TC) представляет собой реакционную камеру емкостью 250 нанолитров со встроенным резистивным датчиком температуры, микроклапанами и поверхностным нагревателем. Движение реагента между верхним цельностеклянным слоем и нижним слоем стекло-PDMS происходит через сквозные отверстия диаметром 500 мкм. После термоциклирования реакционная смесь проходит очистку в камере улавливания / очистки, а затем вводится в камеру капиллярного электрофореза (CE). Блок CE состоит из 30-сантиметрового капилляра, который свернут в компактную структуру с помощью витков шириной 65 мкм.

Секвенирование химии

Платформы

Платформа Apollo 100 (Microchip Biotechnologies Inc., Дублин, Калифорния) объединяет первые два этапа секвенирования по Сэнгеру (термоциклирование и очистка) в полностью автоматизированной системе. Производитель заявляет, что образцы готовы к капиллярному электрофорезу в течение трех часов после загрузки образца и реагентов в систему. Платформа Apollo 100 требует субмикролитровых объемов реагентов.

Источник

Этапы секвенирования с использованием метода терминаторов

Методы расшифровки нуклеотидной последовательности нуклеиновых кислот в отечественной литературе принято называть методами сЕквенирования.

Еще в 50-е годы прошлого века были разработаны методы, позволяющие определять последовательность аминокислот в полипептидной цепи. Теоретически это несложно, поскольку все аминокислоты, встречающиеся в природных белках, имеют разные свойства. Поэтому, когда был расшифрован генетический код, появилась возможность восстанавливать нуклеотидную последовательность транскрибируемой ДНК по аминокислотной последовательности соответствующего белка. Однако, генетический код является вырожденным. Следовательно, первичная структура ДНК, полученная на основе анализа последовательности аминокислот, не является однозначной. Кроме того, для эукариот таким способом можно восстановить лишь нуклеотидный состав экзонов, тогда как информация о составе интронов теряется в результате сплайсинга.

К концу 60-х годов Ф.Сэнгером были разработан метод секвенирования РНК, получаемой с ДНК-матрицы при помощи РНК-полимеразы. Применив этот способ, Ш.Вейссман и У.Фирс смогли концу 1976 г. определить последовательность более половины молекулы ДНК SV40, длина которой превышает 5200 нуклеотидных пар. [1, 2] Следующим шагом должна была стать разработка методов прямого секвенирования ДНК.

Секвенирование ДНК по Сэнгеру: «плюс-минус» метод

Sanger F., Coulson A.R. A rapid method for determining sequences in DNA by primed syntesis with DNA polymerase, J. Mol. Biol., 1975, v. 94, p. 444-448.

Секвенирование ДНК по Сэнгеру: метод «терминаторов»

Sanger F., Niclein S., Coulson A.R. DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. USA, 1977, v. 74, p. 5463-5467.

В 1977 г. автор «плюс-минус» метода предложил еще один способ ферментативного секвенирования, получивший название метода терминирующих аналогов трифосфатов. Более мощный и более технологичный, этот способ, несколько модифицированный, применяется до сих пор. В основе метода тоже лежало ферментативное копирование с помощью фрагмента Кленова ДНК полимеразы I из E.coli. В качестве праймеров использовали синтетические олигонуклеотиды. Специфическую терминацию синтеза обеспечивали добавлением в реакционную смесь помимо четырех типов dNTP (один из которых был радиоактивно мечен по альфа положению фосфата) еще и одного из 2′,3′-дидезоксинуклеозидтрифосфатов (ddATP, ddTTP, ddCTP или ddGTP), который способен включаться в растущую цепь ДНК, но не способен обеспечивать дальнейшее копирование из-за отсутствия 3′-ОН группы. Отношение концентраций dNTP/ddNTP авторы подбирали экспериментально, так, чтобы в итоге получить набор копий ДНК различной длины. Таким образом, для определения первичной структуры исследуемого фрагмента ДНК требовалось провести четыре реакции копирования: по одному типу терминаторов в каждой из реакций. После этого полученные продукты разгонялись в полиакриламидном геле на соседних дорожках и по расположению полос определялась последовательность нуклеотидов.

Секвенирование ДНК по Максаму и Гилберту: метод химической деградации

Maxam A.M., Gilbert W. A new method of sequencing DNA, Proc. Natl. Acad. Sci. USA, 1977, v. 74, p. 560-564.

Смотри также:
/ссылки на сетевые ресурсы/

1

В основе автоматического секвенирования лежит уже упоминавшийся выше метод ферментативного секвенирования с использованием терминирующих ddNTP (*). Как и классический вариант Сэнгера, автоматическое секвенирование включает две стадии: проведение терминирующих реакций и разделение продуктов этих реакций с помощью электрофореза. Как правило, автоматизирована лишь вторая стадия, т.е. разделение меченных фрагментов ДНК в ПААГ, получение спектра эмиссии флуорофоров и последующий обсчет собранных данных. Таким образом, автоматическое секвенирование идеологически отличается от современного ему ручного секвенирования только типом используемой метки.

Флуоресцентную метку включают либо в праймер, либо в терминатор транскрипции согласно следующим схемам: меченный праймер (четыре разных красителя) и немеченые терминаторы; меченный праймер (один краситель) и немеченые терминаторы; меченные терминаторы (каждый тип терминатора своим красителем) и немеченый праймер. Использование меченных праймеров предполагает проведение четырех независимых реакций (отдельно с каждым из терминаторов) для каждого секвенируемого образца. Использование меченных терминаторов позволяет совместить все четыре реакции в одной пробирке. Если используется единственный краситель, то разделение продуктов сиквенсовой реакции в геле проводят на четырех разных дорожках. Использование четырех разных красок позволяет разгонять продукты реакции(й) на одной дорожке.

Ниже будут подробно рассмотрены свойства флуорофоров и полимераз, используемых в секвенировании ДНК, особенности секвенирующего гель-электрофореза и существующие типы секвенаторов.

Спектр абсорбции, равно как и спектр эмиссии, зависят от химической структуры флуорофора, а также от условий в которые молекула флуорофора помещена (рН, температура, среда и т.д.). В автоматическом секвенировании используют флуорофоры, абсорбция и излучение у которых происходит в диапазоне длин волн 450-650 нм (видимая область спектра; секвенаторы ABI и Pharmacia) и 650-825 нм (ближняя инфракрасная область спектра; секвенаторы фирмы LI-COR).

К настоящему времени синтезировано большое число разнообразных флуоресцентных красителей и постоянно продолжается работа над новыми, с улучшенными характеристиками. Помимо высокого квантового выхода флуоресценции красители должны

sequenceob03s
Рисунок 3. Структурные формулы флуоресцеиновых красителей.

sequenceob04s
Рисунок 4. Структурные формулы родаминовых и d-родаминовых красителей [5].

sequenceob05s
Рисунок 5. Красители семейства BigDye™ (AppliedBiosystems) [5].

sequenceob06s
Рисунок 6. Структурные формулы цианиновых красителей.

удовлетворять двум требованиям, перечисленным ниже. Присоединение молекулы флуорофора способно изменять подвижность меченного фрагмента ДНК в геле. Поэтому, если используются одновременно несколько красителей, то необходимо, чтобы влияние каждого из них на подвижность было либо минимальным, либо одинаковым у всех. Выравнивание электрофоретической подвижности (когда это нужно) проводят с помощью линкерных молекул, встраиваемых между красителем и, например, праймером. Еще одним важным моментом является условие минимального перекрывания спектров эмиссии. К сожалению, полностью избежать перекрывания спектров до сих пор не удалось. В качестве альтернативы синтезу все новых соединений недавно был предложен подход, основанный на определении не спектра, а времени флуоресценции. Правда, какого-либо практического выхода эта симпатичная идея пока не получила. [3]

Полимеразы, используемые при секвенировании ДНК

Секвенирующий гель и электрофорез

Современные секвенаторы можно разделить по типу проводимого электрофореза на капиллярные и те, в которых разделение происходит в гелевых пластинах. Последние могут также различаться по количеству детектируемых красителей: один, два или четыре. Капиллярные секвенаторы выпускаются только в варианте, использующем детекцию четырех флуоресцентных красок.

Наиболее успешным секвенатором начала 90-х стал ABI 373 (Applied Biosystems). В этой модели используется одновременная детекция четырех красителей (TAMRA, FAM, ROX, JOE), возбуждаемых излучением аргонового лазера. Лазер генерирует непрерывное излучение в сине-зеленой области спектра в диапазоне 488-514 нм. Разделение фрагментов проводится в геле толщиной 0.4 мм. Возбуждение флуорофора и следующая за этим эмиссия флуоресценции происходят при прохождении меченным фрагментом ДНК зоны сканирования. Для уменьшения эффекта перекрывания спектров эмиссии, получаемый сигнал пропускается через колесо с четырьмя последовательно заменяемыми фильтрами. В результате, первичные данные представляют собой наборы из четырех чисел (в соответствии с сигналом, прошедшим через каждый из фильтров) для каждой точки сканирования (по ширине геля), собранные через равные интервалы времени в течение всего электрофореза.

Среди секвенаторов, детектирующих флуоресценцию одного красителя, можно выделить секвенатор MicroGene Blaster фирмы Visible Genetics. MicroGene Blaster позволяет одновременно проводить анализ четырех образцов, меченных Cy5.5, на 16-ти дорожках. Разделение происходит в одноразовых MicroCel кассетах, заполняемых фотополимеризуемым акриламидом. Высота кассет варьирует от 140 до 280 мм, что позволяет секвенировать от 300 (MicroCel 300 Cassette) до 700 (MicroCel 700 Cassette) нуклеотидов. В качестве источника излучения используется HeNe лазер с длинной волны 632.8 нм. Луч лазера направляется не через, а между стеклами, т.е. поперек геля. Это позволило отказаться от любых движущихся частей и, следовательно, значительно повысить надежность прибора и уменьшить его размеры.

ABI Prism 310 стал пионером капиллярной технологии в секвенировании. Нынешнее поколение капиллярных секвенаторов представляет собой уже мультикапиллярные машины, некоторые из которых демонстрируют гораздо более высокую производительность даже в сравнении с ABI 377. В зависимости от поставленных задач можно остановить свой выбор на восьмикапиллярном Beckman CEQ 2000 (Beckman Coulter), шестнадцатикапиллярном секвенаторе ABI Prism 3100 или 96-ти капиллярных ABI Prism 3700 и MegaBACE 1000 (Amersham-Pharmacia-Biotech-Molecular Dynamics).

Основные характеристики описанных секвенаторов сведены в Таблицу 2.

Источник

Adblock
detector