- Насколько перспективно использование энергии ветра
- С чего всё начиналось
- Востребованность
- Применение
- Достоинства
- Недостатки
- Ложные теории
- Заключение
- Как используют энергию ветра в 21 веке
- Когда начали использовать ветровую энергию?
- Востребованность ветроэнергетики
- Сферы использования
- Плюсы ветряной энергетики
- Минусы энергии ветра
- Ложные теории
- Энергия ветра и её использование в мире
- Технологии ветрогенераторов
- Конструкция ветродвигателя
- Экономна ли энергия ветра
- Применение энергии ветра: виды, история использования и современные способы производства
- Виды ветряной энергии
- Воздушный поток
- История использования
- Ресурсы энергии солнца и ветра на Земле
- Какие преимущества имеет энергия ветра?
- Недостатки ветряных электростанций
- Современные способы производства электричества из энергии ветра
- Как сделать ветряную электростанцию?
- Энергия ветра
- Глобальное распределение ветра
- Глобальные тенденции
- Беларусь: ветровые ресурсы
- Состояние на данный момент
- Технология ветротурбин
- Турбины с горизонтальной осью (Пропеллерные ветровые турбины)
- Ветровые турбины с вертикальной осью (Виндроторные ветровые турбины)
- ВВТ Дарье
- ВВТ Савониуса
- Расчет энергии ветра
Насколько перспективно использование энергии ветра
Ветер – это не просто сложное физическое явление. В современном мире он используется как источник энергии и представляет собой экономически ценный продукт. Ветроэнергетика в мире становится всё более востребованной, над развитием этой отрасли работают учёные различных специальностей.
Насколько велик потенциал ветроэнергетики? Какими достоинствами и недостатками она обладает? Где применяется? Пришло время ответить на эти вопросы.
С чего всё начиналось
Существует общераспространённое заблуждение, что ветроэнергетика зародилась лишь в XVII–XIX столетиях. Однако на самом деле ветер как источник энергии активно использовался представителями древних цивилизаций. Вот несколько красноречивых примеров из истории:
Долгое время ветряная энергетика не могла похвалиться хорошими результатами. Она немного облегчала жизнь и работу человека, но не могла послужить на благо всего человечества.
И только в XX веке технический прогресс коснулся этой отрасли. Учёные начали разрабатывать оборудование, позволяющее преобразовывать энергию воздушных потоков в электроэнергию.
Востребованность
Сегодня энергия ветра используется человеком всё активнее.
По состоянию на 2015 год ветроэнергетика занимает в общем энергобалансе:
Перечисленные страны являются лидерами по получению электроэнергии из ветра. К данному списку стремятся примкнуть Индия, США, Китай.
Ведущие государства мира строят планы по увеличению количества ветропарков. В Китае и некоторых странах ЕС принимаются законы об использовании возобновляемых источников энергии и повышении мощностей. Всё это способствует развитию ветроэнергетики.
Применение
Использование энергии ветра является одним из самых перспективных направлений в современной энергетике. Наглядное сравнение: потенциал ветра более чем в 100 раз превышает потенциал всех рек Земли.
Ветропарки бывают:
Набирает популярность офшорное строительство: ветроустановки возводятся прямо на воде, в 10–12 км от береговой линии океана. Такие парки приносят больше прибыли, чем традиционные. Связано это с тем, что скорость ветра над океаном в несколько раз выше, чем на суше.
Достоинства
Ветровая энергетика обладает рядом значимых преимуществ, таких как:
Все эти характеристики способствуют развитию и глобализации ветроэнергетики.
Недостатки
Ветроэнергетика не имеет каких-либо серьёзных недостатков, но и в этом аспекте есть проблемы:
Люди не могут «приручить» ветер, поэтому говорить о стабильности в работе ветрокомплексов невозможно. Впрочем, это относится ко всем возобновляемым источникам энергии.
Ложные теории
Противники ветроэнергетики придумывают различные лжетеории:
Основная задача таких выдумок – привлечение большего количества людей на сторону традиционной энергетики, которая является более прибыльной для современных предпринимателей.
Заключение
Резкий скачок в развитии ветроэнергетики сделал жизнь человека проще. Энергия ветра используется на крупных промышленных предприятиях и в маленьких сельскохозяйственных комплексах. Именно эта отрасль энергетики является самой востребованной и перспективной.
Как используют энергию ветра в 21 веке
Ее относят к возобновляемым типам силы. Энергия ветра – кинетика воздушных масс, способная в некоторых уголках планеты питать электричеством заводы. Когда Человечество впервые додумалось применять «капризный» атмосферный ресурс? Какие перспективы и сферы использования у основанной на нем энергетической отрасли?
Когда начали использовать ветровую энергию?
Еще во 2 столетии до н.э. Персидское государство, управляющиеся парфянами, использовало ветряные мельницы для помола зерна. Однако не известно представитель, какой национальности изобрел конструкции. К тому времени на землях Ирана 200 лет царила эллинистическая культура. После исламского завоевания изобретение переняли арабы.
Итогом последних Крестовых походов стало еще то, что ветряки (также как бани, античные знания и восточные бытовые традиции) стали распространяться в Европе.
Особого мастерства в строительстве козловых энергетических сооружений с лопастями добились жители германоязычных государств и городов. Благодаря немцам и голландцам они попали и в Россию. С 16 века в Старом Свете уже действуют водонасосы, использующие ветряной двигатель. Удобнее всего было эксплуатировать воду в Нидерландах – заодно избавляться от ее излишков во время приливов (королевство лежит ниже уровня моря).
С целью получения электричества ветер начали осваивать и в Дании – державе, состоящей из пятачков, со всех сторон окруженных «шквалистым» Северным морем. Итак, впервые это произошло в 1890 году. В середине 1920 гг. разработки велись и в России. Однако до сего дня именно датское государство – самый передовой производитель ветроэнергоустановок (несмотря на то, что наибольшей мощности из воздушных потоков удалось недавно выжать именно Южной Корее). С 40-х по 70-е годы отрасль испытывала упадок из-за наивысшего подъема тех видов энергетики, которые стали классическими.
Востребованность ветроэнергетики
Про ветряную энергию в Европе и США вспомнили в конце прошлого века – дал знать о себе нефтяной кризис. А в конце 80-ых Чернобыльская трагедия вызвала скептическое отношение и к атомной энергетике. Разработки ученых в обсуждаемой сфере получили зеленый свет. В Дании родились первые ветрогенераторы современного типа. Их переняли США, устанавливая поначалу в продуваемой всеми ветрами тихоокеанской и пустынной Калифорнии. А потом по всей территории. В итоге в странах Северной Европы и США высокая востребованность ветроэнергетики. К ней привыкли. Ветряки заказывают даже мелкие фермы и обычные домовладения. В указанных странах 67% от всего числа таких установок. В Азии 31% (в основном, в ведущих странах Тихоокеанского региона). Остальные 2 процента продукции рассредоточены по всему миру, который не спешит отказываться от традиционных носителей.
Говоря подробнее о Западе, широко занимаются производством ВЭС Германия (Senvion SE и Siemens), Норвегия (Statoil ASA) и Нидерланды (H Technologies BV). Филиалы этих организаций вместе с датской Vesta намерены создавать плавучие острова, на которые будут помещаться сверхмощные ветряки. В море больше воздушных движений – они там постоянны.
У обозначенных компаний много заказчиков среди соотечественников и по всему свету. Сегодня доля ветряного сектора в массиве электроэнергетики составляет уже 15%.
Сферы использования
Энергия ветра применяется не только в производстве электричества (хотя в Южной Корее и Китае удается выжимать уже до 7,9 ГВт/год с одной установки, питая тем самым небольшие заводы, а в Северной Европе и США на ветре работают многие фермы). Кое-где сила воздушных масс все еще заставляет крутиться жернова мельниц. А еще ветер используют в своих исследовательских целях метеорологи – он указывает им направления глобальных воздушных потоков.
И снова об электричестве. В 3-м тысячелетии ураганы учатся использовать в качестве альтернативного (обычному ветру) источника электроэнергии. Поток с силой 30 м/сек (самый медленный ураган) несет в себе полтора тераватта кинетической энергии. Уже ведутся исследования, которые позволят «оседлать» эту мимолетную пока еще безудержную силу…
Плюсы ветряной энергетики
Описываемый кластер энергодобычи имеет ряд заметных преимуществ, они приведены ниже:
ветряк экологичен (эти аппараты никак не влияют на чистоту окружающей среды);
экономен (не требует затрат на еще какие-нибудь ресурсы: нефть, газ, дрова и т.д.);
дает минимальные потери при передаче своей силы в сам электрогенератор;
будучи безопасным, может быть установлен прямо у объекта-потребителя (не надо ЛЭП).
Минусы энергии ветра
Между тем ветровая энергетика имеет несколько недостатков. Пока их столько, сколько и плюсов.
Высокий шум (он воздействует на фауну и даже человека).
В лопасти генераторов попадают птицы.
Мало где эту силу используют для запитки предприятия (в центральных сетях она добавочная ветка контура, автономно применяется лишь в бытовых целях или в аграрном хозяйстве).
Авиация доказала, что обледенелые лопасти снижают эффективность вращения.
Ложные теории
Вокруг ветроэнергетики сложилось несколько околонаучных мифов. Первый утверждает, что выработка ВЭС может внезапно упасть до нуля (ведь ветер имеет способность быстро стихать). На самом деле в нынешних энергосистемах уже все предусмотрено. Расположенные на все возможные стороны ветряки попросту компенсируют друг друга (если кончился ветер одного направления – обязательно приходит другой поток).
Вторая ложная теория касается появления излишних затрат на контур объектов, предназначенный для хранения и резервирования полученной энергии. По правде уважающая себя ВЭС всегда находится в контуре с еще какой-нибудь системой (к примеру, с солнечными аккумуляторами, АЭС, ТЭЦ или ГЭС).
Третий слух пророчит ухудшение слуха человека от вибрации, рождающейся работой лопастей. Но на расстоянии 300 м ее уже нет.
Энергия ветра и её использование в мире
Энергия ветра наиболее быстро растущий источник электроэнергии в мире.
Общая установленная мощность всех ветрогенераторов в мире составляет 432 гигаватта, что соответствует 3% всей произведенной энергии.
Использование энергии от ветра и превращение её в возобновляемые источники электроэнергии имеет много преимуществ. И хотя энергия ветра имеет долгую историю, начиная от 5000 до н.э., технология никогда не была более рентабельной, чем это прямо сейчас.
В самом деле, в последние месяцы многие государства используют этот способ получения электроэнергии.
Ветер является источником экологически чистой энергии, которая практически не имеет загрязняющих свойств или побочных эффектов.
Энергия от перемещения воздуха: неравномерность нагрева воды и земли создает ветер
Ветер — просто движение воздуха. Это вызвано неравномерностью нагрева земной поверхности солнцем потому, что поверхность земли состоит из различных видов земли и воды, она поглощает тепло солнца с разной скоростью. В течение дня воздух над землей нагревается быстрее, чем воздух над водой. Теплый воздух над землей расширяется и поднимается, а тяжелый, прохладный воздух устремляется и занимает свое место, создавая ветер. Ночью ветры меняются, потому что воздух охлаждается быстрее над сушей, чем над водой. При этом земля вблизи экватора Земли нагревается больше от солнца, чем Земля рядом с Северным и Южным полюсом.
Технологии ветрогенераторов
Технологии энергии ветра используют энергию ветра для практических целей, таких, как производство электроэнергии, зарядку батарей, откачку воды и помол зерна. Механическая или электрическая мощность образуется за счет кинетической энергии ветра.
Количество энергии ветра пропорционально кубу его скорости, это означает, что доступная для ветрового генератора мощность увеличивает коэффициент мощности до восьми если удваивается скорость ветра.
Турбинные лопатки аналогичны лопастям на самолете. Турбины поворачиваются, когда лопасти создают силу от прохождения ветра. Это вращающееся действие поворачивает генератор, который создает электричество.
Поскольку скорость ветра обычно увеличивается с высотой над поверхностью земли (вследствие уменьшения трения с землей), ветровые турбины монтируются на башню, чтобы захватить больше энергии ветра. На высоте 30 метров или больше над землей ветер быстрее и более равномерен.
Технологии энергии ветра могут использоваться как отдельные приложения, подключенные к системе электрической сети. Автономные турбины обычно используются для перекачивания воды. Однако фермеры в ветреных областях также используют небольшие ветряные системы для выработки электроэнергии.
Конструкция ветродвигателя
Существуют различные стили и много различных размеров ветряных турбин для удовлетворения различных потребностей. Наиболее распространенным является стиль, где турбина с двумя или тремя лопастями располагается с подветренной стороны башни.
Существуют малые ветряные турбины используемые, например, для зарядки аккумуляторов на яхте 250 Вт мощностью и до 50 кВт турбины для молочных ферм и отдаленных деревень.
В процентном выражении энергия ветра в настоящее время является быстрорастущим источником в мире. Серьезные обязательства по сокращению углекислого газа способствовали развитию ветровой энергии в Европе, в то время как это возможность избежать постоянного импорта топлива в развивающиеся страны, как Индия.
Экономна ли энергия ветра
Энергия ветра является одним из самых доступных видов электроэнергии сегодня. Это возобновляемый источник энергии. Во многих случаях это дешевле, чем традиционные виды топлива. Себестоимость этой энергии копейки за киловатт-час, цена, которая является конкурентоспособной с новыми газовыми электростанциями. Энергия ветра также производится без выбросов или отходов и используется если нет воды, что делает её главным выбором для нового производства электроэнергии.
Применение энергии ветра: виды, история использования и современные способы производства
Обновлено: 3 января 2021
Виды ветряной энергии
Рост потребления энергоресурсов ускоряется с каждым годом. Появление новых устройств, бытовой техники, компьютерного оборудования способствуют повышению потребностей населения и вынуждает к увеличению мощностей централизованных линий. Их состояние, и так достаточно ветхое, от таких нагрузок становится еще более плачевным. Изношенность электросетей в некоторых регионах достигает 70-80 %, что заставляет задуматься о завтрашнем дне.
С другой стороны, имеется немало регионов, куда линии электропередач д сих пор не проведены. Это отдаленные районы Крайнего Севера, труднодоступные горные населенные пункты и т.д. Надеяться на скорую электрификацию таких мест не приходится, так как важных промышленных или оборонных объектов там нет, а вести линию «в никуда» нерационально, она никогда не окупится.
Выходом из складывающейся ситуации может стать использование альтернативных методов производства электроэнергии. Рассмотрим один из наиболее перспективных вариантов.
Воздушный поток
По сути, энергия ветра одна — кинетическая. Воздушный поток обладает огромной мощью, действие которой можно наблюдать на видео или фотографиях последствий ураганов или просто шквальных порывов. Гораздо больше существует устройств, так или иначе использующих ветряную энергию для выполнения какой-нибудь работы, производства электрического тока и прочих нужд. Так, насосы, действующие от ветряка, известны с незапамятных времен, а современные ветроэлектростанции обеспечивают электрической энергией целые страны и регионы.
Особенностью энергии ветра является ее доступность. Для создания гидроэлектростанции необходимо найти подходящий по рельефу участок русла реки, построить запруду, которая затопит большую площадь полезной поверхности земли. Страдают и исчезают пахотные земли, нарушается естественный ареал обитания животных, изменяется климат в регионе.
Противники ветроэнергетики декларируют различные проблемы, создаваемые использованием ВЭС, но фактов, подтверждающих эти проблемы, не привели ни разу. Практика же опровергает все домыслы относительно вреда от ветростанций, подтверждая лишь полезные свойства.
История использования
Начало использования ветра человеком уходит корнями в далекое прошлое. Прежде всего, это мореплавание. Изобретение паруса намного облегчило навигацию и позволило добираться до места назначения гораздо быстрее. В 200 гг до н.э. в Персии уже существовали ветряные мельницы для изготовления муки.
Первая ветроэлектростанция была выстроена в Дании в XIX веке. Место появления первой станции не случайно, так как в Дании издавна использовались ветряные мельницы, а обычных на то время возможностей для производства электричества при помощи гидростанций не было. Западная Европа является одним из лидеров в развитии ветроэнергетики, хотя с ней весьма сильно конкурируют Китай и Индия.
В России ветровые установки не распространены в должной степени, так как обилие рек способствует развитию гидроэнергетики. Учитывая более высокую производительность ГЭС, это вполне оправдано, но в последнее время интерес к энергии ветра проявляется с новой силой.
Ресурсы энергии солнца и ветра на Земле
Альтернативные источники, к которым относятся солнечная и ветровая энергия, обладают огромным потенциалом. Их количество практически неисчерпаемо, во всяком случае при нынешнем уровне технических возможностей. Особенностями этих видов является периодический характер пользования — для солнца характерен перерыв в ночное время, а ветровые потока не имеют определенной системы и движутся хаотично.
Исключением являются прибрежные регионы, где направление потока изменяет только знак — либо с моря на сушу, либо наоборот. В остальном оба источника бесконечны. Ветер не теряет своей энергии даже при использовании больших станций, состоящих из сотни и более установок, что выгодно отличает его от тех же углеводородов, которые сгорают, загрязняя атмосферу и убывают при этом.
Количество солнечной энергии, доступной на поверхности Земли, во многом зависит от климата и состояния атмосферы в регионе. Районы с обычно затянутым тучами небом в этом отношении бесперспективны. То же касается и регионов со слабыми ветрами в отношении ветроэлектростанций. При этом, энергия ветра доступна в любое время дня и ночи, что делает ее позиции несколько более предпочтительными.
Какие преимущества имеет энергия ветра?
Ветер — абсолютно бесплатный источник энергии. Его не надо добывать, производить или приобретать. В этом состоит его основное преимущество, с которым нельзя спорить или опровергнуть. Кроме этого, есть и другие, не менее привлекательные качества:
Возможность самостоятельного изготовления ветряка из подручных материалов на своем садовом участке или в частном доме отличает этот источник от любого другого. Для самостоятельной сборки требуется некоторый опыт и навык работы со слесарным инструментом и хотя бы базовые познания в электротехнике. В настоящее время получить любую необходимую информацию — не проблема, поэтому задача создания своего собственного ветрогенератора многократно упростилась.
Недостатки ветряных электростанций
К основным недостаткам относят нестабильность воздушных потоков. Даже в прибрежных регионах с преобладающими бризами, имеющими относительно ровные параметры, случаются отклонения от обычных значений, а в континентальных регионах, с их особенностями климата, перепадами среднесуточных температур и влажности, движение воздушных масс имеет сложную и зачастую неожиданную систему. Кроме того, к недостаткам ВЭС принято относить:
Некоторые из этих недостатков можно смело отнести к домыслам, например, высокий уровень шума или вибраций. Но относительно дороговизны и неокупаемости проектов — факт, спорить с которым нет смысла. Расходы на создание ветростанций обычно берутся на себя государствами, особенно если рассматривается крупный проект, способный в корне изменить энергообеспеченность страны, либо, если станция невелика, покрываются из частных инвестиций.
Следует отметить, что стоимость относительно небольших проектов на несколько порядков ниже, чем у гигантов энергетики, что намного увеличивает рентабельность вложений и способствует достаточно быстрой окупаемости.
Современные способы производства электричества из энергии ветра
На сегодня самым распространенным способом преобразования энергии потоков ветра является использование ветрогенераторов. Это устройства, преобразующие энергию потока во вращательное движение, передающееся на генератор, который производит электрический ток. С генератора производится заряд аккумуляторной батареи, которая, разряжаясь, через инвертор питает потребителей.
Примечательно, что все разнообразие конструкций и типов ветряков практически никак не сказывается на состоянии электроники — ее состав, начиная с генератора, одинаков для всех видов установок и различается только по мощности.
Все разнообразие конструкций относится лишь к вращающейся крыльчатке. Здесь имеются разные варианты конструкции:
Наименования этих групп означают расположение оси вращения ротора. Горизонтальные конструкции несколько эффективнее, что стало причиной использования их в крупных ветротурбинах. Вертикальные устройства, в свою очередь, более приспособлены к обслуживанию небольших частных хозяйств, домов, линий освещения или водоснабжения.
Возросший интерес к ветроэнергетическим установкам послужил толчком к росту разработок различных вариантов конструкции ветряка. Основным направлением поисков конструкторов является оптимальный вариант крыльчатки, способный вращаться при слабом ветре. Это актуально для условий России, так как преобладающие ветра в нашей стране относятся к слабым и, в меньшей степени, средним.
Помимо роторных установок рассматриваются и другие конструкции. Например, голландские конструкторы разработали ветряк, работающий на каплях воды. Они переносят заряд с одного электрода на другой, повышая его потенциал. Разработка совершенно новая, никаких характеристик в свободном доступе пока не имеется, но интерес к такой конструкции весьма высок.
Как сделать ветряную электростанцию?
Создание ветряной электростанции является сложным и затратным процессом. Необходимо установить большое количество ветряков и объединить их в единую энергосистему с общей производительностью. Это требует больших усилий по техническому, юридическому и финансовому сопровождению проекта, понадобятся тщательные предварительные разведочные работы, отвечающие на все вопросы эксплуатационного характера:
Эти показатели дают почву для расчетов эффективности и возможности строительства станции в данном регионе. Использование ветроэлектростанций не создает проблем для сельского хозяйства, площади сокращаются только на размеры основания несущих мачт. Работа установок имеет достаточно плавный характер и не вредит окружающим людям или животным. Для местностей, не имеющих других вариантов, ветроэнергетические установки являются оптимальным выходом из положения.
Энергия ветра
Энергия ветра — это кинетическая энергия движущегося воздуха. Ветер, обладающий энергией, появляется из-за неравномерного нагрева атмосферы солнцем, неровностей поверхности земли и вращения Земли. Скорость ветра определяет количество кинетической энергии, которая может быть преобразована в механическую энергию или электроэнергию. Механическая энергия может использоваться, например, для помола зерна и перекачивания воды. Механическая энергия может также использоваться для работы турбин, которые производят электричество. Данная работа сосредоточена именно на ветровой электроэнергии, а не на других неэлектрических формах энергии ветра.
Существует два основных способа, с помощью которых энергия ветра может быть преобразована (как для механических, так и для электротехнических целей): использование либо силы «аэродинамического сопротивления», либо «подъема». Способ аэродинамического сопротивления означает простое размещение одной стороны поверхности против ветра, в то время, как другая сторона находится с подветренной стороны. Движение за счет аэродинамического сопротивления происходит в том же направлении, что и дует ветер. Способ подъема несколько изменяет направление ветра и создает силу, перпендикулярную направлению ветра. Способ аэродинамического сопротивления менее эффективен, чем способ подъема.
Глобальное распределение ветра
Карта на этой странице показывает глобальные ресурсы ветра. Видно, что регионы с высоким потенциалом (около 9 м/с) находятся в средних и высоких широтах (Антарктида, южная Латинская Америка, Гренландия, Северная и Западная Европа), а также в районе огромных равнин и пустынь центральной части Северной Америки, России, Центральной Азии и Северной Африки (примерно 6 м/с).
Скорость ветра необходимая для выработки электроэнергии должна быть, по крайней мере, 2,5–3 м/с и не более 10–15м/с. Многие районы Земли не пригодны для размещения ветровых установок, и почти такое же количество районов характеризуется средней скоростью ветра в диапазоне (3–4,5м/с), что может быть привлекательным вариантом для производства электроэнергии. Однако значительная часть поверхности Земли характеризуется среднегодовой скоростью ветра, превышающей 4,5 м/с, когда энергия ветра наверняка может быть экономически конкурентоспособной.
Оценка ветровых ресурсов конкретной территории является сложной задачей, которая требует многообъемлющих данных. В целом, доступность и надежность данных о скорости ветра крайне низка во многих регионах мира. В общих чертах, потенциал производства ветровой электроэнергии зависит от следующих четырех факторов:
Скорость ветра, преобладающую в регионе, можно определить исходя из глобальной модели (низко- и высокоширотные восточные, среднеширотные западные, и маловетреные тропические зоны конвергенции). Кроме того, в прибрежных районах часто наблюдаются морские и наземные бризы, а высотные районы могут усиливать воздушные возмущения, вызванные тепловыми циклонами.
Источник: Международное энергетическое агентство (МЭА, 2009)
На рисунке приведена карта ветровых ресурсов мира (высота — 80 м, разрешение — 15 км) с указанием установленной мощностью и данными о производстве ветровой электроэнергии ведущими странами мира
Глобальные тенденции
Энергия ветра, с ее зарождением в конце 1970-х гг., стала глобальной отраслью, в которой участвуют энергетические гиганты. В 2008 году новые инвестиции в ветроэнергетику достигли 51,8 млрд. долларов США (35,2 млрд. евро) (ЮНЕП, 2009).
Согласно статистическим данным, опубликованным Европейской Ассоциацией Ветровой Энергетики (EWEA, 2011), преуспевающие рынки существуют в местах с надлежащими условиями размещения. В 2008 году ветроэнергетические установки обеспечили производство около 20% всей электроэнергии Дании, более 11% в Португалии и Испании, 9% в Ирландии и почти 7% в Германии, более 4% всей электроэнергии Европейского союза (ЕС) и почти 2% в США (МЭА Энергия ветра, 2009).
SНачиная с 2000 года, совокупная установленная мощность выросла в среднем на 30% в год (см. рисунок). В 2008 году более 27 ГВт электрической мощности были установлены в более чем 50 странах, в результате чего глобальный наземный и морской потенциал достиг 121 ГВт. В 2008 году Мировой Совет Энергии Ветра подсчитал, что было выработано около 260 миллионов мегаватт часов (260 тераватт часов) электроэнергии.
Беларусь: ветровые ресурсы
«Генеральный план развития ветроэнергетики СССР до 2010 года» 1989 года включал карту ветров каждой республики. Ресурсный потенциал оценивался по скорости ветра на высоте 30 м. Согласно этой ветровой карте скорость ветра на высоте 30 м не достигала 5 м/с. Исходя из этих данных, потенциал ресурсов энергии ветра Беларуси невысок.
Однако, на высоте 80 м показатели ветровых ресурсов улучшаются. Так средняя скорость ветра в Дзержинском районе составляет 8,6 м/с. Большинство стран согласно нижеприведенной карте располагают скоростью ветра около 5 м/с на высоте 80 метров. По данным официальной статистики, потенциал производства электроэнергии Беларуси за счет энергии ветра составляет 6,5 млрд. кВт/ч (при потенциале установленной мощности около 1600 МВт). Наиболее перспективные участки для ветроустановок находятся в Минской области, в западной части страны, а также в городах Витебске и Полоцке, в южной части страны.
При планировании размещения ветроэнергетических установок, желательно иметь больше информации о скорости ветра, а не только национальную карту, так как особенности местности, такие как рельеф, высота, водоемы и растительность оказывают существенное влияние на ветровые ресурсы.
Состояние на данный момент
В настоящее время технически возможное использование ветрового потенциала не превышает 5% от теоретического потенциала. Пока в Беларуси существует четыре важные ветроэнергетические установки.
Ветряная электростанция Дружная, расположенная в западной части страны, имеет полную установленную мощность 0,85 МВт. Она состоит из установки NORDEX (250 кВт), построенной в 2000 году, и систем Repower и турбины Jacobs (600 кВт), построенных в 2002 году. Эти установки производят электроэнергию примерно 1,3–1,4 ГВтч/год, которая поставляется примерно 700 жителям.
В Кореличском регионе работает установка 3×77 кВт, а в Дзержинском районе построена ветротурбина мощностью 250 кВт. Ветряная электростанция, расположенная около Минска имеет мощность 1,08 МВт, и, по оценкам специалистов, ее годовое производство составляет 2 ГВтч электроэнергии. Расположенная в центральной части страны, эта электростанция в состоянии обеспечить электричеством 900 жителей.
Программой развития ВИЭ Беларуси предполагается строительство нескольких ветряных парков, но пока строительные работы практически не начинались. В программе говорится о 1840 объектах, с установленной мощностью 1600 МВт и годовым производством энергии 3,3 млрд. кВт/ч, в том числе в Гродненской области (1,5 МВт), в регионах Новогрудка (15,5 МВт), Лиозно (60 МВт), Ошмян (25 МВт), Дзержинска (60 МВт) и Сморгони (15 МВт).
На рисунке приведена карта ветрового потенциала Беларуси на высоте 80м.
Источник: Европейский банк реконструкции и развития (ЕБРР)
Источник: geni.org
Технология ветротурбин
Возможность производства электроэнергии определяется конструкцией ветровых турбин. Все ветровые турбины состоят из лопастей, которые вращают ось, соединенную с генератором, который и производит электрический ток.
Ветровые турбины могут быть расположены практически везде, где есть ветер, например, на море, на суше и в застроенном месте.
Ветровые турбины имеют различные размеры и номинальную мощность. Самая большая турбина имеет лопасти с размахом большим, чем длина футбольного поля, высоту 20-этажного здания и производит электроэнергию достаточную для электроснабжения 1400 зданий. И, наоборот, ветровая турбина размером с небольшой дом имеет лопасти диаметром от 8 до 25 футов, высоту — свыше 30 футов, и может обеспечивать электроэнергией полностью электрифицированное здание или малое предприятие.
Размер и мощность ветровых турбин колеблется в широких пределах. Выделяются три основных типа ветровых турбин: с горизонтальной осью, с вертикальной осью и канальные.
Турбины с горизонтальной осью (Пропеллерные ветровые турбины)
Пропеллерные ветровые турбины (сокращенно ПВТ) в настоящее время доминируют. Этот вид похож на ветряную мельницу с лопастями в виде пропеллера, которые вращаются вокруг горизонтальной оси.
Пропеллерные ветровые турбины имеют основную ось ротора и электрический генератор в верхней части мачты. Ось ротора должна быть направлена в сторону ветра. Малые турбины ориентируются по ветру с помощью простых направляющих, установленных перпендикулярно лопастям ротора, в то время как в больших турбинах обычно используется датчик ветра, управляющий поворотным двигателем. Большинство крупных ветровых турбин имеют редуктор, который преобразует медленное вращение ротора в быстрое вращение генератора, что важно для выработки электроэнергии.
Так как за мачтой создается турбулентность, турбины, как правило, располагаются с той стороны, откуда дует ветер. В противном случае, турбулентность может привести к авариям из усталостных напряжений, что снижает надежность установки. Тем не менее, несмотря на проблемы турбулентности, построены установки с расположением турбины по направлению ветра, так как они не нуждаются в дополнительном механизме для их ориентации по ветру, и, во время сильного ветра, их лопасти могут сгибаться, что уменьшает зону скольжения и таким образом сопротивление ветру.
Ветровые турбины с вертикальной осью (Виндроторные ветровые турбины)
Виндроторные ветровые турбины (ВВТ) бывают разных типов, но все они имеют общую черту: основной вал ротора расположен вертикально (а не горизонтально).
Различные модели (см. ниже) разрабатываются специально для мест, где направление ветра очень изменчиво или беспокойно. ВВТ, как правило, считаются более легкими в установке и обслуживании, так как генератор и другие основные компоненты могут быть размещены близко к земле (нет необходимости в том, чтобы мачта держала компоненты турбины, а компоненты становятся более доступны).
ВВТ, как правило, менее эффективны, чем ПВТ, по следующим причинам:
Таблица. ПВТ и ВВТ: преимущества и недостатки
Источник: Centurion Energy
ВВТ Дарье
Запатентованная французским авиационным инженером Жоржем Жан-Мари Дарье в 1931 году, ветряная турбина Дарье часто называется «венчиком для взбивания яиц» из-за ее внешнего вида. Она состоит из нескольких вертикально направленных лопастей, которые вращаются вокруг центральной оси.
Разница между ПВТ и ВВТ Дарье состоит в том, что ось пропеллерной турбины всегда сталкивается с ветром, а турбина Дарье представляет собой цилиндр перпендикулярный воздушному потоку. Таким образом, часть турбины работает, а другая часть просто крутиться по кругу.
Разница между ПВТ и ВВТ Дарье состоит в том, что ось пропеллерной турбины всегда сталкивается с ветром, а турбина Дарье представляет собой цилиндр перпендикулярный воздушному потоку. Таким образом, часть турбины работает, а другая часть просто крутиться по кругу.
Лопасти позволяют турбине достигать скоростей, которые выше, чем фактическая скорость ветра, что делает их подходящими для выработки электроэнергии, а не для откачки воды, например. Турбина Дарье может работать при скорости ветра до 220 км/ч и при любом его направлении.
Основной недостаток турбины Дарье — невозможность самостоятельного включения. Для пуска турбины требуется внешний привод (например, небольшой двигатель или набор маленьких турбин Савониуса). При достаточной скорости вращения, ветер создает достаточный крутящий момент, и ротор начинает вращаться вокруг оси с помощью ветра.
Тип турбины Дарье теоретически так же эффективен, как и пропеллерный тип, если скорость ветра постоянная, но на практике эта эффективность редко реализуется из-за возникающих физических напряжений, конструкционных особенностей и изменяемости скорости ветра.
Особым типом турбины Дарье является «Тип Н» (или «Gyromill»). Для получения энергии ветра он работает по тому же принципу, что и ветряная турбина Дарье, но вместо изогнутых лопастей применяются 2 или 3 прямые лопасти, индивидуально прикрепленные к вертикальной оси.
Три основных вида ВВТ Дарье (включая «Gyromill»)
Источник: eolienne.comprendrechoisir.com
ВВТ Савониуса
Турбина Савониуса является простым видом турбины, который был придуман в его современном виде финским инженером Сигурдом Джоханесом Савониусом в 1922 году. Она обычно применяется в случаях, требующих высокой надежности, а не высокой эффективности (например, в вентиляции, в анемометрах, во внутреннем микропроизводстве).
Турбины Савониуса гораздо менее эффективны, чем ПВТ и ВВТ Дарье (около 15%, см. ниже «Расчет энергии ветра»), но в отличие от первых, они хорошо работают при турбулентном ветре и, в отличие от последних, они самостоятельно включаются. В структурном плане они являются устойчивыми, могут хорошо противостоять сильным ветрам и остаются без повреждений и работают тише по сравнению с другими типами.
В отличие от турбины Дарье, которая работает под действием силы «подъема», турбина Савониуса работает за по принципу «аэродинамического сопротивления». Она состоит из 2–3 «ковшей»: изогнутые элементы испытывают меньшее сопротивление при движении против ветра, чем при движении по ветру из-за изогнутой формы ковшей. С точки зрения аэродинамики именно это дифференциальное сопротивление заставляет турбину Савониуса вращаться.
Источник: ITV
Таблица: Дарье или Савониус
Расчет энергии ветра
Мощность энергии ветра (P в ваттах) при известной скорости ветра рассчитывается по следующей формуле:
P = ½ x «плотность воздуха» x «площадь охвата» x («скорость ветра») 3
A = π x («длина лопасти») 2
Однако, как только важные технические требования к ветровым турбинам принимаются во внимание (например, прочность и износостойкость, передаточное число редуктора, требования к подшипникам, генератору), предел количества энергии, которая может быть получено за счет энергии ветра уменьшается до 10–30% от фактической энергии ветра. Этот предел называется «коэффициент мощности», который является уникальным для каждого вида ветровой турбины. Для расчета количества извлекаемой энергии этот коэффициент мощности («Cp») должен быть введен в приведенную выше формулу:
P доступная = ½ x «плотность воздуха» x «площадь охвата» x («скорость ветра») 3 x Cp
Коэффициент мощности Cp зависит от типа ветровой турбины, и изменяется от 0,05 до 0,45.
Источник: buckville.com