Энергетическое использование биомассы древесины

Энергия из спирта и навоза: преимущества и недостатки биотоплива

755669014640462

По данным центра REN21, работающего под эгидой Программы ООН по окружающей среде, в 2017 году около 18,1% всей потребляемой в мире энергии пришлось на энергию из возобновляемых источников. В общественном сознании «зеленая» энергетика —это в первую очередь ветровые и солнечные установки, но в действительности они занимают незначительную долю даже внутри возобновляемого сектора.

755669225792173

Две трети рынка «зеленой» энергетики занимает биоэнергетика. На нее в 2017 году пришлось 12,4% всей потребленной в мире энергии, или 12,8 тыс. ТВт·ч. Использование биомассы для получения тепла и энергии можно разделить на два способа:

Сжигание древесины приводит к выбросам углекислоты, но энергетики отмечают, что высаженные специально для этого деревья впоследствии поглощают вредные газы. Поэтому, несмотря на недовольство некоторых экологов, власти Евросоюза официально приравняли биомассу к возобновляемым источникам энергии. В ежегодном докладе по «зеленой» энергетике за 2019 год специалисты REN21 изучили, что происходит на биоэнергетическом рынке и куда он движется.

В отличие от тех же солнечных батарей биоэнергетика подразумевает более сложную производственную цепочку. В современной энергетике биомассу не просто собирают и сжигают, нужно придумать эффективный способ ее переработать (чему помогают научные исследования) и превратить в биотопливо (с помощью химической промышленности).

755669869386278

1. Твердое топливо

Это наиболее распространенный вид топлива для биоэнергетики. В первую очередь это гранулированная древесина или пеллеты. В 2018 году объем их производства в мире достиг 35 млн т, пятая часть которого пришлась на США. Россия также является крупным производителем пеллетов — ежегодный объем продукции достиг в 2018 году 3,6 млн т, что лишь вдвое меньше объема производства в США. Аналитики REN21 отмечают, что экспорт пеллетов из России в прошлом году вырос на 30%, до 1,5 млн т, при этом в самой стране биоэлектростанции на гранулированной древесине работают лишь на 50% загрузки.

Основными импортерами пеллетов являются страны Евросоюза, Канада и Япония, в которых сейчас активно строятся новые ТЭЦ, производящие как электричество, так и тепло. Помимо дерева твердым биотопливом становятся остатки тростника, торф и даже обработанные коммунальные отходы.

2. Жидкое топливо

Применительно к биоэнергетике жидким топливом чаще всего является биоэтанол. По сути же это просто спирт, получаемый из растительного сырья. В зависимости от климата и условий, в разных странах сырьем могут являться сахарный тростник, кукуруза, зерновые культуры и так далее. Основная сфера его применения — замена бензина, дизеля и авиакеросина для транспортных средств. В 2018 году мировое производство жидкого биотоплива всех видов выросло на 7%, до 153 млн л. По энергоемкости это чуть более 8% от всего рынка биоэнергетики.

755670008684487

Благодаря миллиардным инвестициям в производство биоэтанол постепенно наращивает присутствие на рынке. Например, в 2018 году в мире было совершено 150 тыс. авиаперелетов на биотопливе, пять аэропортов в мире уже имеют нужную инфраструктуру для заправки им самолетов. Цифры могут показаться внушительными, но вообще ежегодно в мире совершается более 40 млн авиарейсов, так что применение биотоплива тут находится на самом раннем этапе.

Две проблемы, которые предстоит решить химикам: в каких долях эффективнее всего смешивать биоэтанол с обычным топливом и какое еще сырье здесь можно использовать. В последние годы американская промышленность пытается наладить производство биоэтанола из целлюлозы, но пока эти проекты балансируют на грани окупаемости.

3. Газообразное топливо

Разложение биомассы приводит к образованию смеси метана и углекислоты, который используется в энергетике как биогаз. ТЭЦ на биогазе работают преимущественно в западных странах: в ЕС к концу 2018 года находилось более 10 тыс. процессинговых центров, еще около 2,2 тыс. в США, причем в каждом из 50 штатов.

Перспективной технологией аналитики REN21 называют получение биометана путем удаления из биогаза углекислоты. С одной стороны, очищение биогаза от подобных примесей до уровня качества природного газа позволит использовать инфраструктуру газовой отрасли, с другой — это сделает энергетическую отрасль более экологичной.

Сейчас основным способом использования биомассы в энергетике является отопление. Четверть тепловой энергии жилые и коммерческие здания во всем мире получают от биотоплива. В подавляющем большинстве случаев это использование традиционной биоэнергии — банальный обогрев горящими поленьями используют в беднейших регионах земли, и точную статистику тут собрать трудно. Современную биоэнергетику используют городские власти для центрального отопления кварталов, где на нее приходится 95% всех используемых возобновляемых источников энергии.

В промышленности традиционное биотопливо не используется, а современные технологии обеспечивают 6,1% нужд в тепловой энергии. Перспективы применения, отмечают авторы обзора, зависят от конкретной отрасли. Сталелитейной промышленности низкотемпературное биотопливо не подходит, тогда как на цементном производстве оно может успешно заменить используемый сейчас для выработки тепла каменный уголь.

В меньшей степени биотопливо применяется на транспорте (3% потребляемой энергии) и для выработки электричества (2,1%). Основной объем энергии из биологических источников на транспорте получают автомобили, хотя замещение биотопливом керосина для самолетов входит в планы многих авиакомпаний.

755669904833299

Использование биотоплива для получения электроэнергии растет стабильными темпами около 7–9% в год, и за десять лет с 2008 года объем выработанного таким способом электричества удвоился почти до 600 ТВт·ч. Основная тенденция, которую отмечают аналитики REN21, — этот сегмент биоэнергетики опережающими темпами растет в Азии (на 14–16% в год), тогда как в Северной Америке и Европе он развивается заметно более умеренными темпами.

В конечном же итоге авторы обзора подчеркивают, что развитие биоэнергетики пока что сильно зависит от внешних условий в определенное время в конкретных регионах. Например, хороший урожай сои в США и Бразилии в 2018 году позволил этим странам резко нарастить производство биодизеля. Одновременно снижающиеся цены на сахар вынудили бразильцев вводить больше мощностей по переработке тростника в биоэтанол. Будут ли в дальнейшем условия благоприятствовать развитию биоэнергетики, неизвестно.

Источник

Использование древесной биомассы для получения энергии

Анализ потребления древесины в России. Сельскохозяйственные отходы растительного происхождения как источник строительного сырья. Использование древесной биомассы для получения энергии. Сущность крупнокусковых отходов, представляющих наибольшую ценность.

В России находится около 50% мировых запасов древесины. Более половины ее ежегодных заготовок направляется на нужды строительства.

1. Образование, классификация и использование отходов древесины

В настоящее время в стране заготавливается около 500 млн. м3 древесины. При этом на всех стадиях процесса от заготовки до переработки древесного сырья образуется значительное количество отходов. Только на лесозаготовках в отходы уходит более 32 % вырубленного леса.

Древесину используют в следующих производствах (в скобках приведены объемы использования):

лесопилении и деревообработке (41 %);

целлюлозно-бумажном производстве (23 %);

гидролизном и лесохимическом производстве (4 %). Кроме того, значительная часть древесины используется в необработанном виде (32 %), в том числе в качестве топлива (13 %). Наибольшая часть древесины, как это видно из приведенных данных, расходуется на лесопиление, где и образуется больше всего отходов: только 60—62 % исходного сырья превращается в основную продукцию.

Кроме того, безвозвратно при сушке теряется 5—7 % и распыляется 1—2 %. Количество коры составляет около 10—12 % от всего объема бревна (кора, правда, не входит в баланс древесины и считается внебалансовым отходом). В раскройных цехах при раскрое необрезных досок на заготовки образуется 7—10 % опилок, 10—15 % обрезков. В строгальных цехах отходы в виде стружки составляют 12—20 % объема поступающих пиломатериалов. Вследствие этого в себестоимости пиленой продукции затраты на сырье составляют 70—80 % от затрат на ее выработку.

Из всего количества образующихся древесных отходов только 60—65 % используется в качестве вторичного сырья, остальные отходы сбрасываются в отвалы, отрицательно влияя на окружающую среду.

Значительное количество отходов образуется при использовании древесины на предприятиях автомобильной промышленности, в транспортном строительстве, станкостроении, торговле, коммунальном хозяйстве, мебельной промышленности и других отраслях экономики.

По количеству получаемых отходов деревообрабатывающая промышленность стоит на одном из первых мест. Количество отходов в этой отрасли зависит от качества поставляемого сырья, типа и размера изготавливаемой продукции, используемой технологии и применяемого оборудования. Количество отходов, образующихся, например, на мебельной фабрике, достигает 60 % от всей использованной древесины.

К отходам, объем которых зависит от используемого для раскроя оборудования, относят опилки. Объем древесины, переходящей в опилки, зависит от толщины пил: чем тоньше пила, тем меньше опилок. Их образование можно вообще устранить, если использовать другие способы деления древесины.

К отходам, обусловленным качеством исходного сырья, относятся горбыли, торцовые срезки, рейки, разнообразные вырезки с пороками и дефектами.

Все отходы древесины являются ценным сырьем для производства различной продукции, однако по возможности утилизации они не равноценны. Наибольшую ценность представляют деловые отходы, из которых можно изготавливать разнообразную мелкую пилопродукцию. К ним относятся горбыли, рейки, крупные кусковые отходы. Их можно использовать и для производства целлюлозы, древесноволокнистых плит (ДВП), древесностружечных плит (ДСП), цементностружечных плит (ЦСП) и химической продукции.

Меньшей ценностью обладают отходы, возможность использования которых ограничена (стружка, опилки, мелкие кусковые отходы, щепа). Опилки и стружку благодаря адсорбирующим, абразивным, изоляционным и другим свойствам широко используют в различных производствах: для хозяйственных целей и как технологическое сырье.

Щепа и мелкие кусковые отходы являются исходным химическим сырьем при производстве строительных материалов, вискозного волокна (а затем тканей), технического спирта, кормовых дрожжей, уксуса, целлюлозы, бумаги, картона и многих других продуктов. Для производства этой продукции древесина измельчается, а затем поступает на переработку по специальной технологии, используемой при производстве конкретной продукции.

Часть древесных отходов в брикетированном виде применяют как топливо для бытовых и промышленных печей.

Для использования в лесохимической и целлюлозно-бумажной промышленности, в производстве строительных материалов кусковые отходы деревообработки должны быть переработаны в технологическую щепу. Этот процесс осуществляется на лесопильном производстве, а сама щепа является сопутствующей товарной продукцией.

Щепа является основным сырьем целлюлозно-бумажной, гидролизной промышленности и ряда других отраслей, эффективность работы которых зависит от ее качества и от стабильности поставок. Поэтому производство щепы не только дает возможность утилизировать отходы древесины, но имеет и важное самостоятельное значение. В зависимости от назначения к технологической щепе предъявляются различные требования. Особенно важно, чтобы щепа не содержала посторонних включений: металла, гнили, песка и т. п. Содержание коры строго лимитируется в зависимости от дальнейшего применения щепы. Например, щепа, идущая на варку целлюлозы, вообще не должна содержать кору. Содержание коры в щепе, идущей на производство ДВП и ДСП, не должно превышать 15 %. Для изготовления специальных высококачественных ДВП применяется щепа, содержание коры в которой не превышает 3 %. Поэтому при изготовлении щепы, идущей в целлюлозно-бумажное производство и на изготовление таких ДВП, используют только очищенные от коры отходы древесины, т. е. отходы, образующиеся от распиловки окоренных бревен.

В процессе производства щепы основной операцией является измельчение древесных отходов. Эта операция определяет качество и выход кондиционной технологической щепы, а также удельные энергозатраты на ее производство. Измельчение кусковых отходов осуществляют на рубильных машинах. В зависимости от формы ротора рубильные машины делятся на барабанные и дисковые. Барабанные рубильные машины производят щепу низкого качества, с неоднородным фракционным составом и с поврежденными волокнами, что связано с их конструкцией. Такая щепа может использоваться для гидролизного производства, но малопригодна для целлюлозно-бумажной промышленности и изготовления ДВП и ДСП. Для получения щепы, пригодной для этих производств, используют дисковые рубильные машины с плоским и геликоидальным диском.

Дисковые рубильные машины бывают с плоской и геликоидальной рабочей поверхностью диска.

В зависимости от аппарата подачи (загрузочного патрона) дисковые рубильные машины бывают со свободной и принудительной подачей древесины к диску для дальнейшей переработки в щепу. В рубильных машинах со свободной подачей древесина поступает к ножам Диска за счет ее самозатягивания.

Механизм принудительной подачи материала в машину представляет собой два ряда приводных валков с шипами. Перерабатываемый материал захватывается валками и направляется к режущим ножам. Величина просвета между нижним и верхним подающими валками определяется толщиной перерабатываемого слоя отходов и регулируется перемещением верхних подающих валков вверх или вниз под действием противовеса или пружин.

Схемы резания древесины в дисковых рубильных машинах показаны на рис. 11.5. Геликоидальная рабочая поверхность диска представляет собой винтовую поверхность, которая сливается с задними кромками ножей, заточенными по той жевинтовой линии. При вращении такого диска и при одновременной подаче древесины к диску ножи срезают древесину не в одной плоскости, как у машин с плоским диском, а по винтовой линии. Резание происходит не в вертикальной плоскости, а по ходу винта. Благодаря этому обеспечивается устойчивое положение и самозатягивание перерабатываемой древесины в процессе резания.

Многоножевые рубильные машины с геликоидальной поверхностью диска могут перерабатывать на щепу не только отходы лесопиления, но и круглый лесоматериал, карандаши фанерного производства и др.

Полученная на рубильных машинах щепа сортируется по размерам на барабанных установках вибрационного или гира-ционного (с круговым качанием сит в горизонтальной плоскости) типа. Наиболее рационально использование гирационных сортировочных машин, основу которых составляют три последовательно установленных по вертикали барабана сита с отверстиями различных размеров. Сита совершают качательные движения в горизонтальной плоскости. На верхнем сите остаются самые крупные куски древесины, которые поступают на повторное измельчение. Со среднего и нижнего сит выходят две фракции щепы, а опилки и мелочь, проскочившие через все три сита, поступают в бункер для опилок.

Технические характеристики сортировочных установок приведены в табл. 11.3.

Для того, чтобы определить кондиционность получаемой продукции и при необходимости внести своевременные коррективы в технологический процесс, проводят лабораторный анализ сырья и готовой продукции. При анализе определяют качество срезов у щепы, ее фракционный состав, наличие и количество посторонних включений, влажность.

Транспортирование щепы в пределах предприятия осуществляется с помощью ленточных, скребковых и шнековых транспортеров, а также пневмотранспортом.

Пневмопогрузчики щепы, характеристики которых приведены в табл. 11.4, отличаются от обычных пневмотранспортных установок более высокой производительностью, обеспечивающей минимальный простой транспортных средств под погрузкой.

Для транспортирования щепы за пределами предприятия, вырабатывающего щепу, используют автомобильный, водный и железнодорожный транспорт.

Автомобильная промышленность Белоруссии и Украины изготавливает специализированные автомобили для перевозки щепы.

Для перевозки щепы железнодорожным транспортом используют вагоны общего назначения с надстроенными по высоте бортами и специализированные вагоны-щеповозы грузоподъемностью 58 т и объемом 135 м3. Вагоны имеют по 10 разгрузочных люков с каждой стороны.

Дальнейшая переработка щепы, полученной из древесных отходов, производится вне лесопильного производства на предприятиях соответствующих отраслей промышленности (стройматериалов, лесохимии, целлюлозно-бумажной и др.) по технологиям, принятым в этих отраслях.

2. Материалы из отходов переработки древесины и другого растительного сырья

В России находится около 50% мировых запасов древесины. Более половины ее ежегодных заготовок направляется на нужды строительства.

Объемы строительно-монтажных работ увеличиваются гораздно быстрее, чем объемы заготовляемой древесины. В связи с этим кондиционная древесина становится в строительстве все более дефицитным материалом. Удельные нормы расхода лесоматериалов в капитальном строительстве постоянно снижаются. Использование отходов заготовки и переработки древесины является важнейшим источником удовлетворения потребностей строительства в эффективных строительных материалах.

Отходы древесины образуются на всех стадиях ее заготовки и переработки. К ним относятся: ветви, сучья, вершины, откомлевки, козырьки, опилки, пни, корни, кора и хворост, которые в сумме составляют около 21% всей массы древесины. При переработке древесины на пиломатериалы выход продукции составляет в среднем 65%, а остальная часть образует отходы в виде горбыля (14%), опилок (12%), срезок и мелочи (9%). При изготовлении из пиломатериалов строительных деталей, мебели и других изделий получают отходы в виде стружки, опилок и отдельных кусков древесины, составляющие до 40% массы переработанных пиломатериалов.

Отходы, образующиеся в процессе обработки древесины, классифицируют в зависимости от их вида на три группы: твердые (или кусковые), мягкие (опилки, стружка) и кора. Отходы классифицируют также в зависимости от последовательности получения: образуемые при заготовке леса; использовании древесины в круглом виде; первичной и вторичной обработке и переработке древесного сырья.

Для производства строительных материалов и изделий в основном используют опилки, стружку и кусковые отходы. Последние применяют как непосредственно для изготовления клееных строительных изделий, так и перерабатывая их на техническую щепу, а затем на стружку, дробленку, волокнистую массу и т. д.

Способ получения опилок предопределяет их физические особенности. При распиловке бревен на лесопильной раме получают опилки крупностью до 7 мм, имеющие форму, близкую к кубической. При обработке древесины на круглопильных станках опилки имеют волокнистую структуру и размеры 1—2 мм. Опилки, полученные на лесопильной раме, имеют большие размеры поперек волокон, что, как правило, неблагоприятно сказывается на механических свойствах изделий.

Древесная дробленка должна иметь коэффициент формы (отношение наибольшего размера к наименьшему) 5—10 и толщину 3—5 мм.

Сырье перед переработкой на стружку подвергается специальной подготовке, заключающейся в сортировке по породам, гидротермической обработке, окорке, разделке, удалению гнили. Гидротермическая обработка древесины производится паром при давлении 0,25— 0,3 МПа или проваркой ее в воде при 70—85 °С. Нагрев и увлажнение древесины снижают шероховатость стружек, сокращают количество мелкой фракции. Древесина, поступающая на переработку в стружку, должна иметь влажность 30—40% и температуру в зависимости от породы 10—50 °С.

Волокнистую массу для изготовления древесно-волокнистых плит получают механическими, термохимическими и химико-механическими способами.

Механический размол основан на истирании древесины в специальных машинах, рабочими органами которых служат быстро вращающиеся рифленые диски или металлические билы. Для облегчения размола и увеличения выхода волокнистой массы в смесь добавляют большое количество воды.

Особенностью термомеханического размола является предварительная обработка волокнистой массы паром при давлении 0,8— 1 МПа.

Химико-механические способы основаны на различной растворимости отдельных химических веществ, составляющих древесину, в слабых растворах щелочей. Эти способы состоят из двух процессов: химической обработки щепы и механического размола.

Средняя длина волокон в массе колеблется от сотых долей миллиметра до 3—4 мм, а диаметр их составляет 30—50 мкм.

В производстве строительных материалов применяют отходы как хвойных, так и лиственных пород. При этом для производства большинства материалов хвойные породы предпочтительнее, так как они содержат меньше водорастворимых экстрактивных веществ, а также различных Сахаров, дубильных и смолянистых веществ, отрицательно влияющих на процессы твердения цементов. В древесине хвойных пород велико содержание длинных и прочных волокон, что позволяет получать из нее высококачественную волокнистую массу.

При применении в производстве экструзионных древесно-стру-жечных плит сырья из лиственных пород повышается расход смолы, уменьшается производительность пресса на 30—40%, а прочность плит снижается на 25—30%.

Для уменьшения количества экстрагируемых веществ в древесных отходах содержание примесей коры должно быть минимальным, полезно также вылеживание древесины после рубки на складах в течение 4—6 мес. «Цементные яды», содержащиеся в древесине, обезвреживаются ее минерализацией, т. е. пропиткой растворами солей, такими как хлорид кальция, сернокислый глинозем, растворимое стекло и др.

Дубильные экстракты используются в кожевенной промышленности, для обработки и облагораживания натуральной кожи.

Исследования подтвердили возможность организации производства арболита на одубине фракции 2,5—10 мм. Полученный на этих отходах арболит имеет среднюю плотность около 650 кг/м3 и прочность 1,5—2 МПа.

Химический состав коры резко отличается от состава древесины. Это различие обусловливается их разным анатомическим строением. Кора содержит значительно больше экстрактивных веществ, чем древесина.

Важным источником строительного сырья также являются сельскохозяйственные отходы растительного происхождения. Особенно значительным является объем таких отходов переработки растительного сырья как стебли хлопчатника и костра.

Костра практически не содержит водорастворимых Сахаров, так как они выщелачиваются при предварительном вымачивании лубяных культур на пенькообрабатывающих предприятиях. Поэтому костру перед смешиванием с цементом, в отличие от древесного заполнителя, предварительно не замачивают в проточной воде или растворе солей.

Дробленые стебли хлопчатника (гуза-пай) остаются после уборки хлопка. В стеблях хлопчатника так же, как и в древесине, присутствуют водорастворимые вещества, состав которых представляет собой сложный комплекс органических соединений. При вылеживании стеблей хлопчатника в результате биологического и климатического воздействия содержание в ней водорастворимых веществ уменьшается.

Содержание очесов, пакли и других комковатых включений в костре льна, конопли и дробленых стеблях хлопчатника не должно превышать 4% по массе.

В качестве заполнителей композиционных строительных материалов, кроме рассмотренных выше отходов, могут быть использованы рисовая солома, рисовая и подсолнечная лузга.

3. Использование древесной биомассы в биоэнергетических проектах северо- западного региона Российской Федерации

Использование древесной биомассы для получения энергии является традиционным для человечества на протяжении миллионов лет. Потребление энергии в промышленно развитых странах постоянно растёт, и эти страны являются крупнейшими в мире производителями энергии. В странах с развитой лесной промышленностью наблюдается устойчивый рост производства биоэнергии, то есть энергии, получаемой из биомассы.

Биоэнергия определяется как «энергия из биомассы или торфа», получаемая в результате цепочки природного цикла, где под воздействием солнечной энергии на биологическое вещество происходит производство биомассы, и затем, при распаде биомассы выделяется энергия. Биоэнергетическая система считается нейтральной в отношении выбросов СО2, и распад биомассы не способствует глобальному потеплению. Это объясняется тем, что при распаде биомассы в техногенных процессах выделяется столько же парниковых газов, сколько выделилось бы при естественном распаде биомассы в природных условиях.

Для определения понятия «биотоплива» можно воспользоваться определением, которое дает шведский стандарт SS 187106, издание 3: «топливо, для которого исходным материалом является биомасса или торф. Топливо может подвергаться химическим процессам или переработке, а также может быть использованным ранее в других целях» [2]. Биомасса в том же стандарте определяется как «материал биологического происхождения, не прошедший химической обработки или эта обработка была незначительной». Биотопливо за последние несколько лет становиться важным фактором решения проблем, связанных с климатом. Киотский протокол определяет почти для каждой страны необходимость снижения выбросов парниковых газов, для чего необходимо уменьшить использование ископаемых видов топлив. «Белый документ по возобновляемой энергии» комиссии Европейского Союза [3], опубликованный в декабре 1997 года, предписывает довести вклад возобновляемой энергии в Европейском Союзе с 6 % до 12 % к 2010 году. Биомасса рассматривается как сектор, который должен быть развит в наибольшей степени и в кратчайшие сроки. Ожидается, что в 2010 году он должен составить 74 % общего потребления возобновляемой энергии в Европейском Союзе.

Строго говоря, торф нельзя отнести к возобновляемым источникам, так это не полностью разложившийся биологический материал, образующийся в болотах в течение сотен лет. Скорость образования торфа в природе в несколько десятков раз меньше скорости его исчерпания. Поэтому использование торфа для производства энергии не относят к «зеленой энергетике». Древесина также обладает относительной возобновляемостью, потому что для образования её запаса определённого качества требуются многие десятилетия. Источником древесины является лес. Согласно классификации Н.Ф. Реймерса, лес как природный ресурс относится к энергетическому типу ресурсов и является исчерпаемым. Лес, как природная система, может быть возобновляемым ресурсом только в том случае, если методы его управления устойчивые и экологически сбалансированные [1]. Это означает, что условия для будущего поколения леса должны быть такого качества, чтобы позволили будущим экосистемам выжить.

Для Северо-запада России с учетом природного ресурса и существующих технологий в настоящее время наиболее актуальной является задача эффективного использования древесного топлива, в первую очередь низкосортной древесины, а также отходов лесозаготовок. Эти отходы для многих лесозаготовителей стали настоящей проблемой, так как их утилизация требует дополнительных расходов, отражающихся на себестоимости продукции.

В процессе работ по заготовке древесины и её дальнейшей переработки только 28 % первоначального дерева становиться пиломатериалом, остальное становится отходами. Простейший расчёт показывает, что при объёмах лесозаготовок в пределах 8,0 млн. м3 образуется около 30 % отходов в виде вершин, сучьев и веток, что составляет 2,6 млн. м3 отходов, которые в настоящее время не используются. Таким образом, потенциальный ресурс древесного биотоплива для котельных Ленинградской области составляет не менее 3 млн. м3, а, по оценкам специалистов Комитета по природным ресурсам и охране окружающей среды Ленинградской области, он составляет около 3,9 млн. пл. м3 в год, что эквивалентно 1 млн. тонн угля или 697 млн. тонн мазута [5].

Древесные отходы производства представляют собой отходы лесозаготовок, лесопиления и деревообработки. Древесные отходы классифицируются по трем основным признакам: виду древесных отходов (породный состав, тип отходов, размер), отраслевой принадлежности и области применения.

Наибольшую ценность у древесных отходов представляют крупнокусковые отходы (длиной более метра) в виде стволов малоценной древесины, реек, горбыля, обрезки пиломатериалов и заготовок, карандаши.

древесина отходы биомасса сырье

Размещено на stud.wiki

Подобные документы

Технологии газификации биомассы, получения жидкого топлива быстрым пиролизом. Сжигание древесины с целью получения тепловой и электрической энергии. Переработка твердых бытовых отходов на энергетических установках. Очистка сточных вод от загрязнений.

курсовая работа [1,6 M], добавлен 15.01.2015

Использование ветра и ветряных установок. Сооружение гигантских ветроэнергетических установок для получения энергии. Способы преобразования солнечных лучей в электрический ток. Использование и получение энергии приливных и отливных морских течений.

реферат [20,4 K], добавлен 09.11.2008

Топливное использование твердых бытовых отходов (ТБО). Требования по эксплуатации ТБО. Биогазовая технология переработки отходов животноводства и ее особенности. Энергетическое использование отходов водоочистки в соединении с ископаемым топливом.

контрольная работа [28,0 K], добавлен 06.11.2008

Отходы как источник загрязнения атмосферного воздуха, подземных и поверхностных вод, почв и растительности. Отходы производства и потребления, их вторичное использование в народном хозяйстве. Сбор, утилизация, обезвреживание промышленных отходов.

реферат [26,1 K], добавлен 08.12.2010

реферат [20,6 K], добавлен 16.05.2013

Динамика производства тепловой энергии в России. Источники сырья для производства тепловой энергии предприятиями ООО «Интинская тепловая компания». Анализ отходов, образующихся на предприятиях. Технологии рециклинга отходов добычи и переработки углей.

курсовая работа [6,7 M], добавлен 05.11.2015

Проблема утилизации твердых бытовых отходов. Основные технологии захоронения, переработки и утилизации отходов. Предварительная сортировка, сжигание, низкотемпературный и высокотемпературный пиролиз. Производство электроэнергии из отходов в Эстонии.

реферат [74,9 K], добавлен 06.11.2011

Характеристика технологии и способов производства макаронных изделий. Анализ образующихся отходов. Существующие способы их использования. Нетрадиционное применение соломы и отрубей в различных сферах. Расчет коэффициентов безотходности и экологичности.

реферат [91,2 K], добавлен 03.12.2014

контрольная работа [183,2 K], добавлен 11.01.2012

Способы получения электроэнергии и связанные с ними экологические проблемы. Решение экологических проблем для тепловых и атомных электростанций. Альтернативные источники энергии: солнца, ветра, припливов и отливов, геотермальная и энергия биомассы.

презентация [4,0 M], добавлен 31.03.2015

Источник

Комфорт