Электрохимические методы исследования основаны на использовании

Электрохимические методы анализа

Разновидностями метода являются электрогравиметрический анализ (электроанализ), внутренний электролиз, контактный обмен металлов (цементация), полярографический анализ, кулонометрия и др. В частности, электрогравиметрический анализ основан на взвешивании вещества, выделяющемся на одном из электродов. Метод позволяет не только проводить количественные определения меди, никеля, свинца и др., но и разделять смеси веществ.

Кроме того, к электрохимическим методам анализа относят методы, основанные на измерении электропроводности (кондуктометрия) или потенциала электрода (потенциометрия). Некоторые электрохимические методы применяются для нахождения конечной точки титрования (амперометрическое титрование, кондуктометрическое титрование, потенциометрическое титрование, кулонометрическое титрование).

Связанные понятия

Метод основан на образовании устойчивых комплексных соединений при взаимодействии раствора ртути (II) c ионами Cl−, Br−, I−, CN−.

300 К) полупроводниковых приборов. Удельная электрическая проводимость σ при 300 К составляет 10−4−10

10 Ом−1·см−1 и увеличивается с ростом температуры. Для полупроводниковых материалов характерна высокая чувствительность электрофизических свойств к внешним воздействиям (нагрев, облучение, деформации и т. п.), а также к содержанию структурных дефектов и примесей.

Стеклянные электроды — тип ионоселективных электродов, сделанных из легированных стеклянных мембран, которые чувствительны к специфическим ионам, используемые для определения концентрации ионов в растворе. Важная часть приборов химического анализа и физико-химических исследований. В современной практике широко применяются мембранные ионоселективные электроды (ИСЭ, в том числе и стеклянные), являющиеся частью гальванического элемента. Электрический потенциал электродной системы в растворе чувствителен.

Источник

Электрохимические методы исследования

Общая характеристика и условия применения электрохимических методов исследования. Разновидности электрохимических методов анализа. Сущность потенциометрии и потенциометрического титрования. Характеристика и особенности кондуктометрии, кулонометрии.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 27.10.2017
Размер файла 39,5 K

ba

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Министерство образования и науки РФ

Федеральное государственное бюджетное образовательное учреждение

«Иркутский национальный исследовательский технический университет»

Кафедра металлургии цветных металлов

«Электрохимические методы исследования»

Реферат по дисциплине

«Физико-химические методы исследования металлургических процессов»

Выполнил студент группы МЦМ-16-1

Проверил преподаватель кафедры МЦМ

Первые представления о взаимосвязи химических и электрических явлений были известны в XVIII веке, так как было выполнено огромное количество физико-химических экспериментов с электрическим и грозовыми разрядами, с зарядами, находящимися в лейденских банках, но все они имели случайный характер из-за отсутствия постоянного мощного источника электрической энергии. Зарождение электрохимии связано с именами Л. Гальвани и А. Вольта. Занимаясь исследованием физиологических функций лягушки, Гальвани случайно создал электрохимическую цепь. Она состояла из двух различных металлов и препарированной лапки лягушки. Лапка одновременно являлась электролитом и индикатором электрического тока, но вывод был дан неправильный, т. е., согласно Гальвани, этот электрический ток, который возникал в цепи, имел животное происхождение, т. е. был связан с функциональными особенностями организма лягушки (теория «животного электричества»).

Далее, в начале XIX века, был разработан электролиз, а М. Фарадей установил количественные законы электролиза. Большой вклад в развитие электрохимии внесли ученые: С. А. Аррениус, В. Ф. Оствальд, Р. А. Колли, П. Дебай, В. Нернст, Г. Гельмгольц и др. Сейчас электрохимия делится на теоретическую и прикладную. Благодаря использованию электрохимических методов, она связана с другими разделами физической химии, а также с аналитической химией и другими науками.

электрохимический потенциометрия кондуктометрия кулонометрия

1. ЭЛЕТРОХИМИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ

Необходимость в использовании разнообразных методов для исследования электрохимических процессов обусловлена широкой областью изменения скорости переноса электрона в электродных реакциях. Каждый из методов имеет некоторый предел по определяемому значению плотности тока обмена, выше которого электрохимические параметры электродной реакции определить нельзя. Применительно к каждому конкретному объекту необходимо выбрать тот метод, который дает максимальный объем надежной информации. При проведении электрохимических исследований необходимо знать химический состав исходных веществ и продуктов реакции. Для определения состава электролита используют различные физико-химические методы: спектрофотометрический, потенциометрический, аналитический и другие. При проведении электрохимических исследований необходимо соблюдать следующие условия.

1. Максимальная чистота используемых реактивов; состав электродов должен быть строго известен, как известно и состояние их поверхностей. Следует следить за тем, чтобы в процессе измерений поверхность электродов не претерпевала изменений.

2. Конструкция электрохимической ячейки и расположенный в ней электродов должны обеспечивать равномерное распределение тока по всей поверхности рабочего электрода.

3. Измерение проводить при строго контролируемой температуре.

4. Поддерживать постоянные давления и состав газовой фазы над электролитом. Как правило, исследования проводят в среде инертного газа (N2, Ar, Ne, He H2), поскольку кислород газовой фазы может оказывать существенное влияние на механизм процесса.

5. Необходимо обеспечить такие условия эксперимента, при которых падение потенциала в диффузной части двойного электрического слоя было бы минимальным или точно известным. Для снижения этого потенциала используют, как правило, фоновый электролит, концентрация которого должна быть не менее, чем в 20 раз выше, чем у основного вещества. Однако предварительно следует убедиться, что фоновый электролит не искажает поляризационной кривой изучаемой реакции.

Во всех случаях изучения кинетики электрохимических процессов необходимо измерение плотности тока. Обычно начинают с того, что выясняют методами аналитической химии, кулонометрии, протекает ли на электроде только одна изучаемая реакция или она осложнена побочными. В случае протекания побочных реакций, надо выяснить, какая доля тока приходится только на осуществление изучаемой реакции (построить так называемую парциальную поляризационную характеристику для изучаемой реакции).

Наиболее просто механизм электродной реакции можно интерпретировать лишь в случае, когда исходное вещество превращается в один продукт со 100%-ным выходом по току. Проверка реакции на соответствие закону Фарадея или проведение кулонометрических измерений позволяет одновременно определить число электронов, участвующих в суммарной электродной реакции. Знание состава исходного вещества и продукта реакции, а также общего числа переносимых электронов, дает возможность записать уравнение суммарной электродной реакции.

Следующим шагом в изучении механизма электродной реакции является выяснение того, какая стадия является лимитирующей.

1.1 Электрохимические методы анализа

Разновидностями метода являются электрогравиметрический анализ (электроанализ), внутренний электролиз, контактный обмен металлов (цементация), полярографический анализ, кулонометрия и др. В частности, электрогравиметрический анализ основан на взвешивании вещества, выделяющемся на одном из электродов. Метод позволяет не только проводить количественные определения меди, никеля, свинца и др., но и разделять смеси веществ.

Кроме того, к электрохимическим методам анализа относят методы, основанные на измерении электропроводности (кондуктометрия) или потенциала электрода (потенциометрия). Некоторые электрохимические методы применяются для нахождения конечной точки титрования (амперометрическое титрование, кондуктометрическое титрование, потенциометрическое титрование, кулонометрическое титрование).

Различают прямые и косвенные электрохимические методы. В прямых методах используют зависимость силы тока (потенциала и т.д.) от концентрации определяемого компонента. В косвенных методах силу тока (потенциал и т. д.) измеряют с целью нахождения конечной точки титрования определяемого компонента подходящим титрантом, т.е. используют зависимость измеряемого параметра от объема титранта.

Для любого рода электрохимических измерений необходима электрохимическая цепь или электрохимическая ячейка, составной частью которой является анализируемый раствор.

Электрохимические методы классифицируют в зависимости от типа явлений, замеряемых в процессе анализа. Различают две группы электрохимических методов:

1. Методы без наложения постороннего потенциала, основанные на измерении разности потенциалов, который возникает в электрохимической ячейке, состоящей из электрода и сосуда с исследуемым раствором. Эту группу методов называют потенциометрическими. В потенциометрических методах используют зависимость равновесного потенциала электродов от концентрации ионов, участвующих в электрохимической реакции на электродах.

2. Методы с наложением постороннего потенциала, основанные на измерении:

В методах этой группы на электроды электрохимической ячейки налагают посторонний потенциал.

Приборы для электрохимических определений кроме электрохимической ячейки, мешалки, нагрузочного сопротивления включают устройства для измерения разности потенциалов, тока, сопротивление раствора, количества электричества. Эти измерения могут осуществляться стрелочными приборами (вольтметр или микроамперметр), осциллографами, автоматическими самопишущими потенциометрами. Если электрический сигнал от ячейки очень слабый, то его усиливают с помощью радиотехнических усилителей. В приборах методов с наложением постороннего потенциала важной частью являются устройства для подачи на ячейку соответствующего потенциала стабилизированного постоянного или переменного тока (зависит от типа метода). Блок электропитания приборов электрохимического анализа включает обычно выпрямитель и стабилизатор напряжения, который обеспечивает постоянство работы прибора.

Потенциометрия основана на измерении разности электрических потенциалов, возникающих между разнородными электродами, опущенными в раствор с определяемым веществом. Электрический потенциал возникает на электродах при прохождении на них окислительно-восстановительной (электрохимической) реакции. Окислительно-восстановительные реакции протекают между окислителем и восстановителем с образованием окислительно-восстановительных пар, потенциал Е которых определяется по уравнению Нернста концентрациями компонентов пар [ок] и [вос]:

Электроды первого рода обратимы относительно ионов металла, из которого состоит электрод. При опускании такого электрода в раствор, содержащий катионы металла, образуется электродная пара: M n + /M.

Электроды второго рода чувствительны к анионам и представляют собой металл М, покрытый слоем нерастворимой его соли МА с анионом A-, к которому чувствителен электрод. При контакте такого электрода с раствором, содержащим указанный анион A-, возникает потенциал Е, величина которого зависит от произведения растворимости соли

ПРMA и концентрации аниона [A-] в растворе.

Электродами второго рода являются хлорсеребряный и каломельный. Насыщенные хлорсеребряный и каломельный электроды поддерживают постоянный потенциал и применяют в качестве электродов сравнения, по отношению к которым измеряется потенциал индикаторного электрода.

Мембранные электроды различного типа имеют мембрану, на которой возникает мембранный потенциал Е. Величина Е зависит от разности концентраций одного и того же иона по разным сторонам мембраны. Простейшим и наиболее употребляемым мембранным электродом является стеклянный электрод.

Для проведения потенциометрических определений собирают электрохимическую ячейку из индикаторного электрода сравнения, который опускают в анализируемый раствор и подсоединяют к потенциометру. Применяемые в потенциометрии электроды имеют большое внутреннее сопротивление (500-1000 МОм), поэтому существуют типы потенциометров представляют собой сложные электронные высокоомные вольтметры. Для измерения ЭДС электродной системы в потенциометрах применяют компенсационную схему, позволяющую уменьшить ток в цепи ячейки.

Наиболее часто потенциометры применяют для прямых измерений рН, показатели концентраций других ионов pNa, pK, pNH?, pCl и мВ. Измерения проводят, используя соответствующие ион-селективные электроды.

рН-метры помимо прямых определений рН, pNa, pK, pNH?, pCl и других позволяют проводить потенциометрическое титрование определяемого иона.

1.3 Потенциометрическое титрование

Потенциометрическое титрование проводят в тех случаях, когда химические индикаторы использовать нельзя или при отсутствии подходящего индикатора.

В потенциометрическом титровании в качестве индикаторов используют электроды потенциометра, опушенные в титруемый раствор. При этом применяют электроды, чувствительные к титруемым ионам. В процессе титрования изменяется концентрация ионов, что регистрируется на шкале измерительного пробора потенциометра. Записав показания потенциометра в единицах рН или мВ, строят график их зависимости от объема титранта (кривую титрования), определяют точку эквивалентности и объем титранта, израсходованный на титрование. По полученным данным строят кривую потенциометрического титрования.

Кривая потенциометрического титрования имеет вид, аналогичный кривой титрования в титриметрическом анализе. По кривой титрования определяют точку эквивалентности, которая находится в середине скачка титрования. Для этого проводят касательные к участкам кривой титрования и по середине касательной скачка титрования определяют точку эквивалентности. Наибольшее значение изменения ?рН/?V приобретает в точке эквивалентности.

Еще более точно точку эквивалентности можно определить методом Грана, по которому строят зависимость ?V/?Е от объема титранта. Методом Грана можно проводить потенциометрическое титрование, не доводя его до точки эквивалентности.

Потенциометрическое титрование применяют во всех случаях титриметрического анализа.

При кислотно-основном титровании используют стеклянный электрод и электрод сравнения. Поскольку стеклянный электрод чувствителен к изменениям рН среды, при их титровании на потенциометре регистрируются изменения рН среды. Кислотно-основное потенциометрическое титрование с успехом применяют при титровании слабых кислот и оснований (рК?8). При титровании смесей кислот необходимо, чтобы их рК отличались больше, чем на 4 единицы, в противном случае часть более слабой кислоты оттитровывается вместе с сильной, и скачок титрования выражен не четко.

Это позволяет использовать потенциометрию для построения экспериментальных кривых титрования, подбор индикаторов для титрования и определения констант кислотности и основности.

При осадительном потенциометрическом титровании применяют в качестве индикатора электрод из металла, составляющего с определяемыми ионами электродную пару.

При комплексометрическом титровании используют: а) металлический электрод, обратимый к иону определяемого металла; б) платиновый электрод при наличии в растворе окислительно-восстановительной пары. При связывании титрантом одного из компонентов редокс-пары меняется его концентрация, что вызывает изменения потенциала индикаторного платинового электрода. Применяются также обратное титрование избытка раствора ЭДТА, добавленного к соли металла, раствором соли железа (III).

При окислительно-восстановительном титровании применяют электрод сравнения и платиновый индикаторный электрод, чувствительный к окислительно-восстановительным парам.

1.4 Кондуктометрия. Кондуктометрическое титрование

Определение концентрации растворов осуществляют прямой кондуктометрией и кондуктометрическим титрованием. Прямая кондуктометрия используется для определения концентрации раствора по калибровочному графику. Для составления калибровочного графика замеряют электрическую проводимость серии растворов с известной концентрацией и строят калибровочный график зависимости электрической проводимости от концентрации. Затем измеряют электрическую проводимость анализируемого раствора и по графику определяют его концентрацию.

Чаще применяют кондуктометрическое титрование. При этом в ячейку с электродами помещают анализируемый раствор, ячейку помещают на магнитную мешалку и титруют соответствующим титрантом. Титрант добавляют равными порциями. После добавления каждой порции титранта замеряют электрическую проводимость раствора и строят график зависимости между электрической проводимостью и объемом титранта. При добавлении титранта происходит изменение электрической проводимости раствора в т.э. наступает перегиб кривой титрования.

От подвижности ионов зависит электрическая проводимость раствора: чем выше подвижность ионов, тем больше электрическая проводимость раствора.

Кондуктометрическое титрование обладает рядом преимуществ. Его можно проводить в мутных и окрашенных средах, в отсутствии химических индикаторов. Метод обладает повышенной чувствительностью и позволяет анализировать разбавленные растворы веществ (до 10- 4 моль/дмі). Кондуктометрическим титрованием анализируют смеси веществ, т.к. различия в подвижности различных ионов существенны и их можно дифференцированно оттитровывать в присутствии друг друга.

Кондуктометрический анализ легко автоматизировать, если раствор титранта подавать из бюретки с постоянной скоростью, а изменение электрической проводимости раствора регистрировать на самописце.

Эта разновидность кондуктометрии получила название хронокондуктометрического анализа.

В кислотно-основном титровании кондуктометрическим путем можно определять сильные кислоты, слабые кислоты, соли слабых оснований и сильных кислот.

В комплексометрическом кондуктометрическом титровании изменения электрической проводимости раствора наступают вследствие связывания катионов металла в комплекс с ЭДТА.

Окислительно-восстановительное кондуктометрическое титрование основано на изменении концентрации реагирующих ионов и появлении в растворе новых ионов, что изменяет электрическую проводимость раствора.

В последние годы получило развитие высокочастотная кондуктометрия, в которой электроды с раствором не контактируют, что важно при анализе агрессивных сред и растворов в закрытых сосудах.

Высокочастотное кондуктометрическое титрование проводят по типу кислотно-основного, окислительно-восстановительного или осадительного титрования в тех случаях, когда отсутствует подходящий индикатор или при анализе смесей веществ.

1.5 Кулонометрия. Кулонометрическое титрование

В кулонометрии вещества определяют измерением количества электричества, затраченное на их количественное электрохимическое превращение. Кулометрический анализ проводят в электролитической ячейке, в которую помещают раствор определяемого вещества. При подаче на электроды ячейки соответствующего потенциала происходит электрохимическое восстановление или окисление вещества. Согласно законам электролиза, открытым Фарадеем, количество вещества, прореагировавшего на электроде, пропорционально количеству электричества, прошедшего через раствор:

Кулонометрический анализ позволяет определять вещества, не осаждающиеся на электродах или улетучивающиеся в атмосферу при электрохимической реакции.

В работе выполнен обзор основных электрохимических методов исследования, подробно изложен их принцип, применение, преимущества и недостатки.

Разновидностями метода являются электрогравиметрический анализ (электроанализ), внутренний электролиз, контактный обмен металлов (цементация), полярографический анализ, кулонометрия и др. В частности, электрогравиметрический анализ основан на взвешивании вещества, выделяющемся на одном из электродов. Метод позволяет не только проводить количественные определения меди, никеля, свинца и др., но и разделять смеси веществ.

Кроме того, к электрохимическим методам анализа относят методы, основанные на измерении электропроводности (кондуктометрия) или потенциала электрода (потенциометрия). Некоторые электрохимические методы применяются для нахождения конечной точки титрования (амперометрическое титрование, кондуктометрическое титрование, потенциометрическое титрование, кулонометрическое титрование).

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Основы современного электрохимического анализа. Будников Г.К., Майстренко В.Н., Вяселев М.Р., М., Мир, 2003.

2. Дж. Плэмбек, под ред. С. Г. Майрановского Электрохимические методы анализа. Основы теории и применение : пер. с англ. / Видання : Мир, 1985.

4. СТО 005-2015. Система менеджмента качества. Учебно-методическая деятельность. Оформление курсовых проектов (работ) и выпускных квалификационных работ технических специальностей.

Размещено на Allbest.ru

Подобные документы

Классификация электрохимических методов анализа, сущность вольтамперометрии, кондуктометрии, потенциометрии, амперометрии, кулонометрии, их применение в охране окружающей среды. Характеристика химико-аналитического оборудования и основные фирмы-продавцы.

курсовая работа [395,8 K], добавлен 08.01.2010

Электрохимические методы основаны на измерении электрических параметров электрохимических явлений, возникающих в исследуемом растворе. Классификация электрохимических методов анализа. Потенциометрическое, кондуктометрическое, кулонометрическое титрование.

реферат [47,1 K], добавлен 07.01.2011

Классификация электрохимических методов анализа. Потенциометрическое определение концентрации вещества в растворе. Принцип кондуктометрии. Типы реакций при кондуктометрическом титровании. Количественный полярографический анализ. Прямая кулонометрия.

курсовая работа [41,8 K], добавлен 04.04.2013

Сущность электроаналитических методов, возможность получить экспериментальную информацию о кинетике и термодинамике химических систем. Достоинства, недостатки и пригодность вольтамперометрии, кондуктометрии, потенциометрии, амперометрии и кулонометрии.

реферат [611,0 K], добавлен 20.11.2009

Общая характеристика потенциометрического анализа. Индикаторные электроды (электронообменные и ионоселективные). Виды потенциометрического метода анализа. Прямая потенциометрия и потенциометрическое титрование. Измерение ЭДС электрохимических цепей.

курсовая работа [378,5 K], добавлен 08.06.2012

Источник

Глава I. Электрохимические методы анализа

15085498405665s

Глава I. ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА

Электрохимические методы анализа (ЭХМА) основаны на использовании процессов, протекающих на поверхности электрода или в приэлектродном пространстве, и измерении электрического параметра системы (разности потенциалов, силы тока, количества электричества, омического сопротивления, электропроводности и др.), значения которого функционально связаны с составом и концентрацией (специфическими свойствами) раствора, т. е. пропорциональны количеству определяемого вещества в анализируемом растворе. Эти зависимости используют для количественного и качественного определения веществ.

Основные понятия электрохимии

Электродный процесс (электрохимическая реакция) – гетерогенная реакция, протекающая между компонентами электропроводящих фаз (электрод – раствор), в ходе которой ионы или электроны проходят через границу раздела фаз, и на межфазной границе устанавливается разность электрических потенциалов, называемая электродным потенциалом.

Электродный процесс включает две обязательные стадии: массоперенос – доставку вещества к электроду за счет диффузии, миграции (движения ионов под действием электростатических сил) и конвекции и собственно электрохимическую реакцию (разряд-ионизацию).

При равновесии электрохимическая реакция протекает в обоих направлениях с одинаковыми скоростями, ток в замкнутой гальванической цепи отсутствует, электродный потенциал достигает равновесного значения. В отсутствие равновесия в результате электрохимической реакции через ячейку протекает электрический ток, при этом электродный потенциал отклоняется от равновесного – электрод поляризуется.

Электрохимическая ячейка чаще всего состоит из двух или трех электродов (индикаторного или рабочего электрода, электрода сравнения и вспомогательного), погруженных в раствор электролита.

Индикаторный электрод – это электрод, на котором протекает собственно электрохимическая реакция окисления или восстановления. Это легкополяризуемый электрод, он должен реагировать на изменение концентрации определяемого вещества.

Электрод сравнения – неполяризуемый электрод, потенциал его должен быть устойчивым во времени. Электрод сравнения служит для создания измерительной цепи и поддержания постоянного значения потенциала индикаторного электрода.

Используемый в трехэлектродной ячейке вспомогательный электрод (противоэлектрод) вместе с рабочим электродом включен в цепь, через которую проходит электрический ток. В состав электролитической ячейки могут входить два идентичных электрода, выполняющих одинаковую функцию.

Электрохимические методы анализа можно классифицировать в зависимости от процессов, происходящих на электродах:

· методы, не связанные с электродной реакцией, измеряемый сигнал является откликом на изменения электрохимических свойств в объеме раствора (кондуктометрия);

· методы, основанные на электродной реакции, в результате которой ток через границу раздела не протекает, и на границе раздела фаз устанавливается равновесный потенциал, величина которого зависит от активности (концентрации) компонентов, участвующих в электродной реакции (потенциометрия);

· методы, основанные на электродной реакции между электродом и приэлектродной частью раствора, в ходе которой электроны или ионы переходят через границу раздела фаз, обусловливая возникновение тока (вольтамперометрия, амперометрия, кулонометрия, электрогравиметрия).

Если электродная реакция не приводит к заметному изменению объемной концентрации раствора, электрохимический метод может быть использован для индикации конечной точки титрования в титриметрии.

В данной главе дается краткое описание теоретических основ, аналитических возможностей и применения некоторых электрохимических методов анализа.

В основе потенциометрических измерений лежит зависимость равновесного потенциала электрода от активности (концентрации) определяемого иона практически в отсутствие тока между индикаторным электродом и электродом сравнения (гальванический элемент), погруженными в анализируемый раствор, при замыкании гальванической цепи.

Измеряемое напряжение, таким образом, равно:

Возникновение электродного потенциала связано с электродным процессом на границе индикаторный электрод ‑ раствор, содержащий окислительно-восстановительную пару:

Ox + п е image001 1Red,

либо восстановленную форму обратимой окислительно-восстановительной системы

Мn+ + п е image001 1M 0

При установлении динамического равновесия электрод приобретает равновесный потенциал. Реакции, протекающие на границе раздела электрод-раствор, называются потенциалопределяющими, а ионы Ox, Red ‑ потенциалопределяющими ионами. Потенциал индикаторного электрода зависит от активности потенциалопределяющих ионов по уравнению Нернста:

image002 2

Еº ‑ стандартный электродный потенциал, В.

Потенциометрию применяют как для непосредственного определения концентрации (активности) вещества, находящегося в растворе (прямую потенциометрию), так и для определения точки эквивалентности при титровании (потенциометрическое титрование), измеряя потенциал индикаторного электрода в зависимости от добавленного титранта.

1.1. Индикаторные электроды в потенциометрии

Для потенциометрических измерений используют два основных типа индикаторных электродов: металлические и мембранные (ионоселективные) электроды.

1.1.2. Мембранные (ионоселективные) электроды

Ионоселективные электроды (ИСЭ) – это сенсоры (чувствительные элементы, датчики), потенциал которых линейно зависит от логарифма активности определяемого иона в растворе, они позволяют избирательно определять активность одних ионов в присутствии других.

Потенциал мембранного электрода возникает за счет обмена заряженными частицами (ионами) между раствором и мембраной электрода. Полупроницаемая мембрана отделяет внутреннюю часть электрода (внутренний раствор) от анализируемого (внешнего) раствора и обладает способностью пропускать преимущественно ионы одного вида. Активность ионов, к которым мембрана проницаема, во внутреннем растворе постоянна.

При потенциометрических измерениях с использованием ИСЭ измеряют ЭДС следующей ячейки:

Электрод сравнения 1

Электрод сравнения 2

image003 3image004 2image003 3

После погружения электрода в анализируемый раствор начинается движение иона А+, проникающего через мембрану, в направлении его более низкой активности. Так как ионы несут заряд, то из-за различия активностей ионов А+ в растворе и мембране на обеих сторонах мембраны возникают граничные потенциалы Е1 и Е2, препятствующие дальнейшему перемещению ионов. С помощью двух электродов сравнения, помещенных во внешний и во внутренний растворы можно измерить разность граничных потенциалов, или так называемый мембранный потенциал Ем :

image005 1

Так как активность ионов А+ во внутреннем растворе постоянна, потенциал мембранного электрода Ем линейно зависит от логарифма активности иона А+ в анализируемом растворе:

image006 3

Если раствор кроме определяемого иона А содержит посторонние ионы K, потенциал ионоселективного электрода описывается уравнением Никольского (модифицированным уравнением Нернста):

image007 2,

где const – константа, зависящая от значений стандартных потенциалов Е0 внутреннего и внешнего электродов сравнения и от природы мембраны электрода; aA и nA, aK и nK – активности и заряды основного (потенциалопределяющего) и постороннего ионов соответственно; image008 3– потенциометрический коэффициент селективности электрода по отношению к потенциалопределяющему иону A в присутствии постороннего иона K. Коэффициент селективности можно определить экспериментально, чем меньше его величина, тем более селективен электрод по отношению к определяемому иону.

Электроды с жесткой матрицей. Стеклянный электрод. Самым известным примером стеклянного электрода является электрод для измерения рН растворов. Он состоит из стеклянного шарика, который является тонкой рН-чувствительной мембраной, изготовленной из стекла особого состава. Например, стекло марки «корнинг» имеет следующий состав: 22% Na2O, 6% СаО, 72% SiO2.

image009 0Рис. 1.1. Стеклянный электрод для измерения рН:

1 – стеклянная рН-чувствительная мембрана;

2 – 0.1 М раствор HCl, насыщенный AgCl;

3 – серебряная проволочка;

4 – стеклянная трубка;

Внутренним раствором служит раствор соляной кислоты с определенным значением рН (обычно 0,1 М НСl), насыщенный хлоридом серебра. Внутрь помещается серебряная проволочка, образуя хлоридсеребряный электрод сравнения (рис. 1.1.). Чувствительностью к ионам водорода обладает только хорошо вымоченная мембрана.

Ионообменная реакция сводится к обмену ионами водорода между внешним раствором и стеклом (NaGl):

Н+ + Na+Gl‾ image001 1Na+ + H+Gl‾

раствор тв. раствор тв.

Поскольку активность ионов водорода во внутреннем растворе постоянна, потенциал стеклянного электрода становится мерой активности ионов водорода во внешнем растворе, т. е. электрод обладает водородной функцией:

image010 2

В величину const входят потенциалы внешнего и внутреннего электродов сравнения и так называемый потенциал асимметрии, возникающий в результате различных механических и химических воздействий на внешнюю и внутреннюю поверхность мембраны, величина его меняется в процессе эксплуатации электрода. Правильные результаты можно получить при регулярной градуировке стеклянного электрода по стандартным буферным растворам. Для точных измерений необходимо градуировать электрод по двум растворам.

Изменяя состав стекла, можно получить мембраны, обладающие пониженной селективностью к ионам Н+ и высокой селективностью к другим ионам. Созданы электроды для определения ионов натрия, калия и др.

Ферментные электроды – это датчики, в которых ионоселективный электрод покрыт пленкой, содержащий фермент, способный вызвать реакцию органического или неорганического вещества (субстрата) с образованием веществ (ионов, молекул), на которые реагирует электрод. Существуют электроды для определения глюкозы, мочевины и др.

1.1.1. Металлические электроды

Возникновение потенциала металлического электрода обусловлено электронообменными процессами на межфазной границе. Различают активные и инертные металлические электроды.

Активные металлические электроды изготовляют из металлов, образующих восстановленную форму обратимой окислительно-восстановительной системы (Ag, Pb, Cu, Cd), это электроды первого рода.

Электроды первого рода представляют собой металлическую пластинку или проволоку, погруженную в раствор хорошо растворимой соли этого металла (серебро в растворе нитрата серебра, медь в растворе сульфата меди). Потенциал такого электрода зависит от активности собственных ионов в растворе, непосредственно участвующих в электродной реакции переноса электронов, например:

Ag+ + e → Ag° image011 2

Такие электроды можно использовать лишь в тех растворах, где они не участвуют в химических реакциях с растворителем или электролитом фона, поэтому для селективного определения ионов металлов их используют реже, чем ИСЭ.

Инертные металлические электроды изготовляют из благородных металлов (Pt, Au, Ir и др.). Они служат переносчиками электронов от восстановленной формы к окисленной, и их потенциалы являются функцией соотношения активностей окисленной и восстановленной форм полуреакции. Эти электроды применяют в потенциометрическом окислительно-восстановительном титровании.

К электронообменным электродам, кроме металлических, относят водородный и хингидронный электроды.

1.1.2. Электроды сравнения

Электрод сравнения должен обладать постоянным потенциалом, не зависящим от состава исследуемого раствора. В качестве электродов сравнения чаще используют хлоридсеребряный и насыщенный каломельный электроды. Хлоридсеребряный электрод состоит из серебряной проволочки, электролитически покрытой слоем хлорида серебра и погруженной в раствор хлорида калия. Для полуреакции

зависимость потенциала электрода от активности хлорид-ионов описывается уравнением

image012 2

Иногда электроды второго рода используют в качестве индикаторных, с их помощью измеряют концентрацию ионов, не участвующих непосредственно в процессе переноса электрона.

1.3. Прямая потенциометрия (ионометрия)

Прямая потенциометрия основана на непосредственном измерении потенциала индикаторного электрода и вычислении активности потенциалопределяющих ионов по уравнению Нернста.

Метод широко применяется для определения концентрации водородных ионов или рН растворов. Создание надежно работающих ионоселективных электродов значительно расширило практические возможности прямого метода. Прямой потенциометрический метод часто стали называть ионометрическим методом анализа или ионометрией.

Это удобный, простой и экспрессный современный метод: продолжительность анализа определяется временем подготовки пробы, поскольку, непосредственно на измерение тратится не более 1–2 мин.

В методе ионометрии предварительно, пользуясь растворами с известной концентрацией, градуируют электрод, т. е. опытным путем определяют зависимость его потенциала от концентрации потенциал-определяющего иона. Затем измеряют потенциал раствора с неизвестной концентрацией определяемого иона и по градуировочному графику находят его содержание.

Ионоселективные электроды позволяют измерять концентрации ионов до 10‾6 М в растворе. При этом необходимый для определения объем раствора составляет всего 0.05–0.1 мл.

1.4. Потенциометрическое титрование

Потенциометрическое титрование основано на определении точки эквивалентности по изменению потенциала индикаторного электрода при проведении химической реакции между титрантом и определяемым веществом. Вблизи точки эквивалентности происходит резкое изменение (скачок) потенциала индикаторного электрода, если хотя бы один из участников реакции титрования является участником электродного процесса.

Виды кривых титрования приведены на рис. 1.2.

image013

Рис. 1.2. Кривые потенциометрического титрования.

а) интегральная кривая; б) дифференциальная кривая;

в) кривая титрования по второй производной; г) кривая Грана.

Кривые титрования могут быть построены в координатах: потенциал индикаторного электрода (Е) ‑ объем титранта (V) (рис. 1.2а.). Это так называемая интегральная кривая потенциометрического титрования. Точка перегиба на кривой отвечает точке эквивалентности. Ее находят графическим путем: нахождением середины отрезка между касательными двух ветвей кривой.

Для более точного нахождения точки эквивалентности часто строят дифференциальную кривую потенциометрического титрования в координатах ∆Е / ∆V V (рис. 1.2б). На точку эквивалентности указывает максимум полученной кривой, а отсчет по оси абсцисс, соответствующий этому максимуму, дает объем титранта, израсходованного на титрование до точки эквивалентности.

На рис. 1.2в представлена кривая потенциометрического титрования в координатах: вторая производная потенциала по объему титранта 2Е / 2V ‑ объем титранта, V. Для нахождения точки эквивалентности соединяют концы обеих ветвей кривой.

В методе Грана (рис. 1.2г) точка эквивалентности определяется по графику в координатах: V / E V. Перед точкой эквивалентности и после нее кривая Грана линейна. Точка эквивалентности находится как точка пересечения этих прямых. Достоинства и удобства метода Грана особенно заметны при анализе разбавленных растворов, позволяющих определить точку эквивалентности с достаточной точностью вследствие линейности графика, а также в тех случаях, когда кривая титрования выражена плохо.

В потенциометрическом титровании могут быть использованы любые известные типы химических реакций, протекающие быстро и количественно.

Кислотно-основное потенциометрическое титрование основано на протекании химической реакции нейтрализации. В качестве индикаторного применим любой электрод с водородной функцией: водородный, хингидронный, стеклянный. Чаще всего используется стеклянный электрод. Метод позволяет провести количественное определение компонентов в смеси кислот, если константы их диссоциации различаются не менее чем на три порядка (например, в смеси соляной и уксусной кислот); многоосновных кислот (оснований), так как удается достичь разделения конечных точек многоступенчатого титрования (на кривой титрования при этом наблюдается несколько скачков).

Широкие возможности анализа многокомпонентных смесей без разделения открывает применение неводных растворителей. Например, раздельное определение соляной и монохлоруксусной кислот невозможно в водном растворе из-за отсутствия двух скачков титрования, но его удается провести в ацетоне.

В окислительно-восстановительном потенциометрическом титровании наибольшее распространение нашел платиновый индикаторный электрод. Величина скачка определяется разностью формальных потенциалов полуреакций. Желательно, чтобы одна из полуреакций была обратимой. При титровании не рекомендуется измерять потенциал до добавления титранта и вблизи точки эквивалентности, т. к. приобретаемый электродом смешанный потенциал неустойчив, поэтому его трудно измерить.

Все большее значение приобретает проведение редокс-титрования в органических растворителях. Одним из таких методов является определение воды по методу Фишера.

Комплексонометрическое потенциометрическое титрование используется для определения катионов металлов при титровании их комплексоном (III) (ЭДТА) с применением в качестве индикаторного соответствующего металлического электрода: титрование солей меди с медным электродом, солей цинка ‑ с цинковым электродом и т. д., а также ртутного электрода. Также используют ионоселективные электроды, обратимые относительно определяемого компонента. В ряде случаев необходимо добавление в анализируемый раствор потенциометрических индикаторов – потенциалопределяющих ионов, вводимых в небольшом количестве и обеспечивающих отклик индикаторного электрода либо до, либо после достижения конечной точки титрования (так, при титровании железа (Ш) вводят железа(П) в небольшом количестве).

По методу осаждения могут быть также определены катионы серебра, ртути, цинка, свинца и т. д.

Существует несколько вариантов потенциометрического титрования в зависимости от инструментальных особенностей. С применением неполяризованных электродов можно провести титрование а) с одним индикаторным электродом и одним электродом сравнения; б) с двумя различными индикаторными электродами. Варианты титрования с применением поляризованных электродов (титрование под током): а)с одним индикаторным электродом и одним электродом сравнения; б) с двумя одинаковыми электродами сравнения.

Метод потенциометрического титрования имеет ряд преимуществ перед прямой потенциометрией и титрованием с визуальными индикаторами: отсутствие искажения результатов за счет диффузионного потенциала; нет необходимости знать коэффициент активности определяемого иона; исключение субъективных ошибок за счет инструментального фиксирования конечной точки; возможность анализа мутных и окрашенных растворов; сравнительно легкая автоматизация; возможность дифференцированного титрования компонентов смеси, в том числе с использованием неводных растворителей. Результаты определений методом потенциометрического титрования более точны, чем при использовании прямой потенциометрии, так как вблизи точки эквивалентности небольшому изменению концентрации соответствует большое изменение потенциала индикаторного электрода.

К недостаткам потенциометрического титрования можно отнести не всегда быстрое установление потенциала после добавления титранта.

Вольтамперометрический метод анализа основан на изучении поляризационных или вольтамперных кривых (вольтамперограмм) – зависимостей силы тока от приложенного напряжения. Вольтамперограммы регистрируют в электролитической ячейке с помощью поляризуемого индикаторного электрода и неполяризуемого электрода сравнения, погруженных в анализируемый раствор. На легкополяризуемом микроэлектроде происходит электровосстановление или электроокисление вещества (деполяризатора).

В настоящее время существует несколько десятков разновидностей вольтамперометрии, способных обеспечить экспрессность, высокую чувствительность, избирательность при определении неорганических и органических веществ в самых разнообразных объектах.

В классическом полярографическом методе в качестве рабочего электрода используют ртутный капающий электрод (ртуть вытекает из тонкого капилляра), электродом сравнения служит насыщенный каломельный электрод или донная ртуть. Если в растворе присутствуют вещества, способные электрохимически восстанавливаться или окисляться (так называемые деполяризаторы), то при наложении на электрохимическую ячейку линейно-меняющегося потенциала регистрируется вольтамперная кривая в виде волны (рис. 1.3).

image014 0

Рис.1.3. Классическая полярограмма:

2 – диффузионный ток

При низких значениях потенциала (участок 1 на рис.1.3), величина которого не достаточна для того, чтобы на рабочем микроэлектроде проходила электрохимическая реакция, через ячейку проходит очень незначительный остаточный ток. Остаточный ток обусловлен прежде всего током заряжения двойного электрического слоя, который образуют ионы раствора на катоде, когда потенциал электрода недостаточен для их разряда, и присутствием в растворе более электрохимически активных, чем определяемое вещество, примесей.

При увеличении потенциала электрохимически активное вещество – деполяризатор вступает в электрохимическую реакцию на электроде, например,

Cd2+ + 2 е + Hg image001 1Cd (Hg)

и в результате этого ток резко возрастает. Это так называемый фарадеевский ток. С ростом потенциала ток возрастает до некоторого предельного значения, оставаясь затем постоянным (участок 2). Предельный ток обусловлен тем, что в данной области потенциалов практически весь деполяризатор из приэлектродного слоя исчерпан в результате электрохимической реакции, а обедненный слой обогащается за счет диффузии деполяризатора из объема раствора. Скорость диффузии деполяризатора в этих условиях контролирует скорость электрохимического процесса в целом, и ток перестает зависеть от наложенного напряжения. Такой ток называют предельным диффузионным.

Для того, чтобы исключить электростатическое перемещение деполяризатора (миграцию) в поле электродов и понизить сопротивление ячейки, измерения проводят в присутствии большого избытка сильного электролита, называемого фоновым или фоном. Являясь электрохимически индифферентным, он не принимает участия в электродной реакции, но его ионы экранируют электрод, уменьшая тем самым движущую силу миграции под действием электрического поля практически до нуля.

Полярограмма содержит ценную аналитическую информацию: качественной характеристикой деполяризатора является потенциал полуволны 1/2) – потенциал, при котором ток равен половине величины диффузионного тока. Потенциал полуволны Е1/2 не зависит от силы тока и концентрации восстанавливающегося иона, зависит от его природы. Определение Е1/2 составляет основу качественного полярографического анализа.

Предельный диффузионный ток (Id) линейно связан с концентрацией деполяризатора в объеме раствора, и эта зависимость является основой количественного полярографического анализа. Связь Id с концентрацией иона См выражается уравнением Ильковича:

image015 1

где: п – заряд иона; D коэффициент диффузии, см2·сˉ1; т – скорость вытекания ртути, мг·сˉ1; t – время образования капли (период капания), с; CM – концентрация деполяризатора, ммоль/л; Id – ток, мкА.

Если в растворе находится несколько электрохимически активных соединений, на полярограмме будет не одна волна, а несколько ‑ по числу восстанавливающихся ионов (рис. 1.4.). Можно получить полярографический спектр ионов и затем по измеренному Е1/2 идентифицировать неизвестное вещество.

image016 0

в растворе восстанавливающихся

Для определения концентрации используют метод сравнения со стандартом, метод градуировочного графика и метод добавок.

2.3. Амперометрическое титрование

image017 1

Рис. 1.5. Вольтамперограммы электроактивного вещества при концентрациях с1>c2>c3>c4 (а), кривая амперометрического титрования этого вещества при потенциале индикаторного электрода E1 (б)

В ходе амперометрического титрования регистрируют величину диффузионного тока в зависимости от объема добавленного титранта. Кривая амперометрического титрования в координатах: сила тока ‑ объем титранта (Id ‑ V) состоит из двух линейных участков, точку эквивалентности находят графически. В качестве индикаторных электродов в амперометрическом титровании обычно применяют платиновые, графитовые и другие твердые электроды, чаще всего вращающиеся.

Следует различать электрохимическую реакцию, протекающую на границе раздела фаз электрод-раствор, и химическую реакцию, протекающую в растворе между определяемым веществом и титрантом.

Вид кривой амперометрического титрования зависит от того, какой компонент химической реакции участвует в электродном процессе (является деполяризатором): определяемое вещество, титрант или продукт реакции. На рис. 1.6 представлены основные типы кривых амперометрического титрования, в таблице 1 приведены примеры титрования.

а) определяемое вещество электрохимически активно

До точки эквивалентности уменьшается концентрация определяемого вещества в растворе, диффузионный ток падает.

б) титрант электрохимически активен

Концентрация электрохимически активного титранта в растворе увеличивается после достижения точки эквивалентности; это приводит к возрастанию силы тока Id.

image018

Рис.1.6. Виды кривых амперометрического титрования:

определяемое вещество и титрант;

в) определяемое вещество и титрант электрохимически активны

До точки эквивалентности диффузионный ток уменьшается с уменьшением концентрации определяемого вещества. После точки эквивалентности диффузионный ток возрастает с увеличением концентрации титранта в растворе.

г) продукт химической реакции электрохимически активен

В ходе химической реакции образуется продукт, концентрация которого возрастает до точки эквивалентности, после чего остается постоянной. Диффузионный ток возрастает до точки эквивалентности.

Таблица 1. Тип кривой в зависимости от условий амперометрического титрования

Источник

Adblock
detector