Экономический коэффициент реактивной мощности

Содержание
  1. Компенсация реактивной мощности для экономии электроэнергии
  2. Компенсация реактивной мощности для экономии электроэнергии в сети на балансе потребителя.
  3. Когда необходимо делать компенсацию реактивной мощности.
  4. Экономическая целесообразность компенсации и выбор коэффициента реактивной мощности.
  5. Экономический коэффициент реактивной мощности
  6. Экспресс анализ необходимости и финансовой целесообразности интеграции конденсаторных установок КРМ, УКРМ, УКМ в силовую сеть объекта.
  7. Экономическая сущность компенсации реактивной мощности
  8. Влияние реактивной мощности на экономические и технические характеристики сетей: формулы
  9. Компенсация реактивной мощности в сетях напряжением 6.3-10.5/0,4 кВ
  10. Некоторые аспекты применения коэффициентов мощности cos φ и реактивной мощности tg φ.
  11. Особенности компенсации реактивной мощности в сетях напряжением 6.3-10.5/0,4 кВ

Компенсация реактивной мощности для экономии электроэнергии

Анонс: Особенности компенсации реактивной мощности в сетях объектов. Компенсация реактивной мощности для экономии электроэнергии в сети на балансе потребителя. Экономическая целесообразность компенсации и выбор коэффициента реактивной мощности.

С учетом интенсивного увеличения индуктивной нагрузки у потребителей – промышленных и непромышленных объектов компенсация реактивной мощности практически всегда актуальна и обеспечивает экономию электроэнергии и, соответственно, энергосбережение и энергетическую эффективность предприятия, организации, однако:

В свою очередь ΔР по факту определяется снижением потерь активной энергии на передачу реактивной благодаря снижению фактического значения tg(φ) до нормативного (и ниже), установленного для сетей разного напряжения в приложении Приказа Минэнерго РФ от 23 июня 2015 года N 380 «О Порядке расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств (групп энергопринимающих устройств) потребителей электрической энергии» и/или договором потребителя с электроснабжающей организацией.

Таблица. Актуальные максимальные значения коэффициента реактивной мощности в часы больших суточных нагрузок электрической сети согласно Приказа Минэнерго РФ от 23 июня 2015 года N 380.

Уровень напряжения в точке поставки потребителя Максимальное значение tg(φ)
110 кВ (154 кВ) 0,5
35 кВ (60 кВ) 0,4
1-20 кВ 0,4
ниже 1 кВ 0,35

Компенсация реактивной мощности для экономии электроэнергии в сети на балансе потребителя.

Безусловными сегодня следует признать факты того, что:

Т.е. даже при мало ощутимой в финансовом плане, выгода от компенсации реактивной мощности в сети на балансе потребителя будет всегда, и она будет выражена в улучшении работы оборудования, оптимизации производственно-технологических процессов, повышении качества и, соответственно, конкурентоспособности продуктов/услуг.

krm ekonomia electroenergii 01

Когда необходимо делать компенсацию реактивной мощности.

Вместе с тем, однозначное решение, когда необходимо делать компенсацию реактивной мощности, принимается по значению ΔР (см. рис. ниже), которое можно определить по формуле ΔР = Рф – Рн = Кип*(Qф – Qн), где коэффициент изменения потерь активной мощности Кип при отсутствии заданной величины для промышленных предприятий принимают равным 0.07.

krm ekonomia electroenergii 02

Учитывая, что Qф = Рф*tg(φ)ф после преобразований получим

Подставив Qн в формулу ΔР получаем:

и после преобразований

Полученная формула показывает, что при:

Так, например, если усредненное значение Qф в интервале пиковой нагрузки по показаниям счетчика (или результатам энергоаудита) 10000 кВАР и расчетный tg(φ)ф = 0.55 при нормативном tg(φ)н = 0.45, то

ΔР = 0.7*10000*(0.55 – 0.45)/(0.55*(1 – 0.7*0.45)) = 1872 кВт, что при 8-часовом режиме работы за месяц добавит почти 450 тыс. кВт*ч электроэнергии к счету оплаты.

В то же время, если за счет компенсации реактивной мощности снизить tg(φ)ф до 0.35, то

Экономическая целесообразность компенсации и выбор коэффициента реактивной мощности.

Оценка экономии электроэнергии по ΔР в совокупности со сроком окупаемости капитальных вложений Тн позволяет определить не только экономическую целесообразность мероприятий по реактивной мощности, но и выйти на пороговый коэффициент реактивной мощности для установок повышения коэффициента мощности.

Так, ΔР*N*Тсред не должно быть больше Зун, где N – количество часов работы в год (ч/год), Тсред усредненный тариф за оплату электроэнергии в руб/(кВт*ч), Зу – суммарные затраты на установку компенсации реактивной мощности (руб), Тн – срок окупаемости (10 лет).

Таким образом компенсация реактивной мощности:

Источник

Экономический коэффициент реактивной мощности

tsink sert

62d01f3ec4bcab9f616212a5d9015b23

Конденсаторы для силовой электроники

dd17114571783d3ae129c87ae497d1d6

Конденсаторы для повышения коэффициента мощности

declaration ukrm

Установки компенсации реактивной мощности 0.4кВ

84c8b49d3f76a7d2591583c419076ec8

Моторные и светотехнические конденсаторы

okupaemost krm 01

Необходимость и целесообразность использования на объекте средств компенсации реактивной мощности, в том числе для распределительных сетей высокого (Uном>1кВ) и низкого напряжения (Uном

в силовую сеть объекта, но, как правило, со сложными расчетами и/или сомнительно корректных в техническом аспекте, что исключает возможность быстрой оценки наличия/отсутствия самой проблемыреактивной мощности для конкретного предприятия и финансовой целесообразности инвестировать в компенсацию при текущем уровне цен и тарифов на электроэнергию.

okupaemost krm 02

Своим действующим и потенциальным Заказчикам, предполагающим наличие проблемы реактивной мощности в силовой сети своего объекта, команда компании «Нюкон» предлагает экспресс анализ необходимости и финансовой целесообразности интеграции конденсаторных установок КРМ, УКРМ, УКМ, акцентируя внимание на том, что предлагаемые методики расчетов:

Экспресс анализ необходимости и финансовой целесообразности интеграции конденсаторных установок КРМ, УКРМ, УКМ в силовую сеть объекта.

okupaemost krm 03

Необходимость компенсации реактивной мощности на объекте может быть превентивно оценена по коэффициенту реактивной мощности tgφ, который согласно требованиям Приказа Министерства энергетики РФ от 23 июня 2015 года N 380 «О Порядке расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств (групп энергопринимающих устройств) потребителей электрической энергии» для напряжения в точке поставки потребителя электрической энергии ниже 1 кВ не должен превышать 0.35 (на практике пороговое значение tgφ, выше которого необходимы мероприятия по компенсации реактивной мощности составляет

Таблица. Коэффициенты мощности, реактивной мощности и доля реактивной мощности в % от активной в распределительных сетях высокого и низкого напряжения.
Коэффициент активной мощности 1.0 0.99 0.97 0.95 0.94 0.92 0.9 0.87 0.85 0.8 0.7 0.6 0.5 0.316
Коэффициент реактивной мощности 0.0 0.14 0.25 0.33 0.36 0.43 0.484 0.55 0.60 0.75 1.02 1.35 1.73 3.016
Реактивная мощность, % от активной мощности 0.0 14 25 33 36 43 48.4 55 60 75 102 135 173 301.6

Коэффициент реактивной мощности – отношение реактивной Q и активной Р составляющих полной мощности и может быть определен:

Таблица. Ориентировочные коэффициенты мощности и реактивной мощности для типовых производственных предприятий.

1,35

1,35

1,02

1,35

1,35

Ориентировочный расчет срока окупаемости конденсаторной установки повышения коэффициента мощности может быть выполнен по формуле Ток = З1/(З2 – З3)(месяцев), где:

Снижение объемов реактивной мощности при компенсации может быть ориентировочно найдено по таблице ниже, и тогда (З2 – З3) = З2*Кр = = (Eq/Т)*1.18*k*Кр, а Ток = З1*Т/( Eq*1.18*k*Кр) (месяцев).

Источник

Экономическая сущность компенсации реактивной мощности

878d02b445eebf7f4c9ee9a01c08c928

1411136195 2Для технологических линий, отделений, цехов промышленных предприятий реактивные нагрузки, как правило, больше активных. Потребление реактивной мощности, превышающей экономичные значения, приводит к уменьшению пропускной способности всех элементов электрических сетей, дополнительным потерям напряжения и энергии. Следствия этого:

необходимость увеличении мощности силовых трансформаторов, сечений токопроводящих элементов,

повышение стоимости электроэнергии,

снижение ее качества, уровня напряжения и производительности электрифицированных технологических линий и другого электрооборудования.

В условиях эксплуатации для снижения потребления реактивной мощности реализуют ряд технических мероприятий: замену на меньшую мощность малозагруженных асинхронных двигателей, ограничение холостой работы двигателей, сварочных трансформаторов и т.д. Такие мероприятия улучшают работу сетей, но не обеспечивают наиболее экономичные режимы электроснабжения и электропотребления. Это достигается применением компенсирующих установок.

В чем экономический смысл компенсации реактивной мощности? При отсутствии компенсирующих установок потребляемая реактивная мощность Qм максимальна. Максимальны и вызываемые потребляемой реактивной мощностью потери энергии, напряжения, максимальны затраты Зп, вызванные необходимостью компенсации этих потерь (см. рис. 1).

1411136135 1

Рис. 1. К обоснованию экономической сущности потребляемого значения реактивной мощности

При установке компенсирующего устройства потребление реактивной мощности уменьшается, но это требует затрат Зку на приобретение, монтаж, обслуживание компенсирующего устройства. Снижение потерь энергии, повышение качества напряжения происходит в течение всего срока службы компенсирующего устройства, поэтому при оценке суммарных, общих затрат З = Зку + Зп, единовременные затраты на монтаж компенсирующего устройства приводят к годовым, умножая на нормативный коэффициент эффективности.

При некотором значении реактивной мощности Qэ, суммарные затраты З оказываются минимальными. Экономичное значение Qэквap и (или) соответствующий расход реактивной мощности устанавливается (задается) энергоснабжающей организацией. При потреблении реактивной мощности, равной Qэ обеспечивается экономичный режим работы питающих сетей.

Энергоснабжающая организация стимулирует достижение такого режима, применяя пониженную оплату за потребление реактивной мощности.

Компенсация реактивной мощности и качество напряжения

При потреблении реактивной мощности более технически допустимого предела (более Qп) энергосистема не несет ответственности за качество напряжения. Энергоснабжающая организация поддерживает в часы наибольших и наименьших нагрузок установленные, указываемые в договоре, уровни напряжения лишь при выполнении требований по компенсации, т. е. при мощности компенсирующих устройств в сетях предприятия.

У низковольтных электроприемников в сетях с практически однородной нагрузкой необходимое качество напряжения обеспечивается встречным регулированием в центре нагрузок питания и правильным выбором положения переключателей силовых трансформаторов цеховых подстанций. Рекомендуется в соответствии с фактическими нагрузками ежеквартально проверять и при необходимости корректировать положение переключателей силовых трансформаторов. Целесообразно все расчеты при этом выполнять а автоматизированном режиме. В сетях с значительной неоднородностью нагрузок батареи конденсаторов используются не только для компенсации, но и для регулирования напряжения.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Влияние реактивной мощности на экономические и технические характеристики сетей: формулы

Полный ток J, потери напряжения ∆U и мощности ∆P в линии связаны с нагрузками P и Q и сопротивлениями линии R и X соотношениями:

541

Как следует из формул (7.1) – (7.3), значение каждого параметра определяется как активной, так и реактивной нагрузкой. Используя величину П в качестве общего обозначения параметров (7.1) – (7.3), а величину Па в качестве обозначения их значений, соответствующих tg ϕ = 0, определим долю значения П, обусловленную передачей реактивной мощности, по формуле:

542

Подставив в (7.4) значения J, ∆U и ∆P, определенные по формулам (7.1) – (7.3) при этих двух условиях, получим:

543

Значения dр ∆U вычислены для проводов марок АС-70 (ξ = 1,02) и АСО-300 (ξ = 4,47), наиболее широко применяемых в сетях 10 и 220 кВ, соответственно.

544

Из приведенных результатов следует, что передача реактивной мощности «забирает» существенную часть сечения проводов и мощности трансформаторов (при tg ϕ =0,5 более 10 %), снижая возможности передачи активной мощности, и приводит к увеличению потерь мощности и электроэнергии (при tg ϕ = 0,5 порядка 20 % суммарных потерь).

Еще большее влияние реактивная мощность оказывает на режимы напряжения. Потери напряжения, обусловленные передачей реактивной мощности, составляют около 1/3 суммарных потерь напряжения в сетях 6–10 кВ и около 2/3 в сетях более высоких напряжений. Происходящее при этом снижение напряжения в сети приводит к еще большему увеличению потерь электроэнергии и снижению пропускной способности линий и трансформаторов. Для трансформаторов характерны значения ξ = 20 – 30, поэтому потери напряжения в них практически полностью определяются передаваемой реактивной мощностью. Кроме влияния на экономические показатели сетей, передача реактивной мощности может привести и к нарушению технических ограничений по допустимым напряжениям в узлах потребления энергии.

При выборе оптимальной мощности средств КРМ необходимо сопоставлять их стоимость с эффектом, получаемым от улучшения всех перечисленных выше параметров электрических сетей.

Соотношение стоимостей производства и передачи по электрическим сетям Cпр /Cпер для активной и реактивной мощности существенно различаются. Производство активной мощности (энергии) на крупных электростанциях намного дешевле ее производства на небольших станциях, расположенных в узлах нагрузки. Снижение стоимости производства, происходящее при его концентрации на крупных электростанциях, существенно превосходит увеличение стоимости потерь электроэнергии, обусловленных ее передачей на дальние расстояния. Выработка же реактивной мощности непосредственно в узлах нагрузки осуществляется сравнительно дешевыми техническими средствами – компенсирующими устройствами (КУ). Затраты на единицу мощности КУ в 10–20 раз ниже затрат на генераторную мощность электростанций. И хотя выработка реактивной мощности на электростанциях намного дешевле, чем с помощью КУ, однако стоимость ее передачи в узлы потребления в несколько раз превышает затраты на КУ. Кроме того, в большинстве случаев эту практически «бесплатную» реактивную мощность технически невозможно передать по сети к удаленным узлам нагрузки из-за недопустимого снижения напряжения в сети.

Кроме затрат на приобретение КУ, их транспортировку к месту установки и монтаж, осуществляемых единовременно (капитальные вложения), ежегодно приходится производить затраты на обслуживание и текущий ремонт КУ. Эффект, получаемый от улучшения каждого из перечисленных выше параметров электрических сетей, также имеет разновременный характер. Снижение потерь электроэнергии оценивают как годовое значение. Возрастающую пропускную способность сетей следует оценивать как снижение единовременных капитальных вложений в развитие сетей. Повышение напряжения в узлах приводит к увеличению эффекта от этих двух составляющих.

Если ежегодные затраты на обслуживание и ремонт КУ принять равными p0 процентов стоимости КУ, то приведенные к году удельные затраты на КУ, руб./квар в год, составят:

545

Выражение для суммарных годовых затрат на потери электроэнергии и на КУ имеет вид:

546

Для определения оптимальной мощности КУ Qк 0 приравняем нулю производную (7.9) по Qк (при этом для простоты не учитываем влияния КУ на напряжение):

Источник

Компенсация реактивной мощности в сетях напряжением 6.3-10.5/0,4 кВ

Причины необходимости компенсации реактивной мощности у потребителя электроэнергии. Некоторые аспекты применения коэффициентов мощности cos φ и реактивной мощности tg φ. Особенности компенсации реактивной мощности в сетях напряжением 6.3-10.5/0,4 кВ.

Выработка, передача и потребление электроэнергии переменного тока сопряжено с решением ряда проблем и ключевой из них можно смело считать проблему компенсации реактивной мощности. В сетях переменного тока de facto потребителями реактивной мощности являются, как звенья самой сети (линии электропередачи, трансформаторы подстанций, шунтирующие реакторы и т.д.), так и все без исключения приемники электроэнергии, причем львиную долю реактивной мощности (порядка 60%) потребляют асинхронные двигатели сетей среднего и низкого напряжения, около четверти всей реактивной мощности приходится на трансформаторы разного назначения, в том числе трансформаторы понижающих подстанций и одну десятую часть делят между собой приемники, использующие для запуска и работы переменное магнитное поле (индукционные печи, выпрямители и т.д.).

Генераторы электростанций в нормальном режиме работы вырабатывают активную мощность, в режиме перевозбуждения — реактивную мощность в объемах от 20% до 70% от средней потребности в реактивной мощности распределительных сетей, понижающих подстанций и приемников электроэнергии у потребителей. Также незначительная доля потребности в реактивной мощности компенсируется емкостью воздушных и кабельных линий, но все это в совокупности не решает и даже отчасти усугубляет проблему дефицита реактивной мощности и вызываемых этим негативных последствий, поскольку транспорт реактивной мощности от генераторов электростанций:

По этим причинам в РД 34.20.185-94 «Инструкция по проектированию городских электрических сетей» (п. 5.2.9), «Методических указаниях по проектированию развития энергосистем» Минпромэнерго (п. 5.36.3), «Правилах технической эксплуатации электрических станций и сетей Российской Федерации» Минэнерго РФ (п. 6.3.16) и ряде других нормативно-правовых актов определена необходимость использования устройств компенсации реактивной мощности у потребителей, что снижает объемы перетоков мощности и в целом увеличивает пропускную способность сетей различного напряжения.

Некоторые аспекты применения коэффициентов мощности cos φ и реактивной мощности tg φ.

В «Приложении к Порядку расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств (групп энергопринимающих устройств) потребителей электрической энергии, применяемых для определения обязательств сторон в договорах об оказании услуг по передаче электрической энергии (договоры энергоснабжения)» (Приказ №49 Минпромэнерго России от 22 февраля 2007 года) определены предельные значения коэффициентов мощности cos φ и реактивной мощности tg φ в зависимости от точки присоединения потребителя к распределительной сети.

Типпроизводства Ориентировочный коэффициент мощности cosφ Ориентировочный коэффициент реактивной мощности tgφ
Хлебопекарное производство 0,6–0,7 1,35-1,02
Мясоперерабатывающее производство 0,6–0,7 1,35-1,02
Мебельное производство 0,6–0,7 1,35-1,02
Лесопильное производство 0,5–0,7 1,73-1,02
Молочные заводы 0,6–0,8 1,35-0,75
Механообрабатывающие заводы 0,5–0,6 1,73-1,35
Авторемонтные предприятия 0,7–0,8 1,02-0,75
Пивоваренные заводы
Деревообрабатывающие предприятия
Цементные заводы
Горные разрезы
Сталелитейные заводы
Табачные фабрики
Положение точки присоединения потребителя к электрической сети tgφ cosɸ
Напряжением 110 кВ (154 кВ) 0.5 0.9
Напряжением 35 кВ (60 кВ) 0.4 0.93
Напряжением 6-20 кВ 0.4 0.93
Напряжением 0,4 кВ 0.35 0.94

При аудите электрической распределительной сети или сегмента электрической сети, находящегося в балансовой принадлежности потребителя может использоваться, как коэффициент мощности cos φ, определяемый отношением активной мощности к полной мощности, так и коэффициент реактивной мощности tg φ, численно равный отношению реактивной к активной мощности. Вместе с тем таблица ниже демонстрирует недостаточность коэффициента мощности cos φ для точной оценки потребности в потреблении реактивной мощности.

Таблица. Значение реактивной мощности (РМ) в процентах от активной мощности при разных значениях коэффициентов мощности cos φ

cos φ 1.0 0.99 0.97 0.95 0.94 0.92 0.9 0.87 0.85 0.8 0.7 0.5 0.316
tg φ 0.0 0.14 0.25 0.33 0.36 0.43 0.484 0.55 0.60 0.75 1.02 1.73 3.016
РМ,% 0.0 14 25 33 36 43 48.4 55 60 75 102 173 301.6

Из данных таблицы видно, что даже при высоких значениях коэффициента мощности cos φ = 0.95 электроприемниками/звеньями электрической сети потребляется реактивная мощность величиной в 33% от активной мощности, а уже при значении коэффициента мощности cos φ = 0.7 объемы потребляемой активной и реактивной мощности сравниваются. Поэтому более целесообразно выполнять оценку распределительной сети/сегмента сети в балансовой принадлежности потребителя по коэффициенту реактивной мощности tg φ, показывающему реальный баланс активной и реактивной мощности.

Особенности компенсации реактивной мощности в сетях напряжением 6.3-10.5/0,4 кВ

Целесообразность компенсации реактивной мощности для потребителя можно рассматривать, как в техническом, так и экономическом аспектах. В случае подключения потребителя к распределительной сети 6,3 (10,5) кВ конденсаторные установки могут интегрироваться на подстанции в балансовой принадлежности электросетевой компании и тогда потребитель будет иметь чисто техническую выгоду от качества получаемой электроэнергии. При установке КРМ 6,3 (10,5) кВ (или УКРМ 6,3 (10,5) кВ) на шинах РУ 6,3 (10,5) кВ предприятия, или на шинах РУ цеховых ТП 6-10/0,4 кВ, шинах первичных цеховых РП 0,4 кВ, а также непосредственно у электроприемников, потребитель будет иметь, как техническую, так и экономическую выгоду за счет возможности использования активной мощности в более полном объеме и соответственно снижения затрат на «балластную» реактивную мощность.

Источник

Комфорт