Эффективность использования солнечной энергии

bliki krugi blesk fon yarkiy 68572 1280x720 Вес тела
Содержание
  1. Солнечная энергия: преимущества и недостатки
  2. Солнечная энергия: обзор
  3. Краткий обзор
  4. Преимущества солнечной энергии
  5. Стабильный
  6. Низкое воздействие на окружающую среду
  7. Энергетическая независимость
  8. 173 000
  9. Недостатки солнечной энергии
  10. Прерывистость
  11. Землепользование
  12. Дефицит материалов
  13. Оборотная сторона окружающей среды
  14. Солнечная энергетика сегодня и перспективы её дальнейшего развития
  15. Как солнечная энергия преобразуется в электричество
  16. Фотовольтарика
  17. Современные солнечные панели и электростанции
  18. Гелиотермальная энергетика
  19. Солнечные аэростатные электростанции
  20. В чём преимущества солнечной энергетики
  21. Проблемы развития солнечной энергетики
  22. Как развита солнечная энергетика в России
  23. Солнечная энергия — огромный, неисчерпаемый и чистый ресурс
  24. Преобразование солнечной энергии в электричество
  25. Как работают панели солнечных батарей
  26. Компоненты PV ячейки
  27. Перовскит «удешевит» солнечную энергию
  28. Солнечная энергия для ЦОД
  29. Интересно

Солнечная энергия: преимущества и недостатки

Основным преимуществом технологии солнечной энергии является то, что она является устойчивой альтернативой ископаемым видам топлива. К недостаткам можно отнести то, что это дороже, чем другие чистые источники энергии.

Солнечная энергия: обзор

В связи с растущей угрозой изменения климата из-за чрезмерного выброса углерода многие страны ищут альтернативы чистой энергии, чтобы заменить традиционные ископаемые виды топлива.

Из всех альтернатив экологически чистой энергии солнечная энергия, возможно, была самой дорогой, хотя цены на нее снижаются.Однако после рассмотрения плюсов и минусов наряду с ожиданиемпродолжения снижения цен будущее солнечной энергии выглядит довольно радужным.

Плюсы солнечной энергии заключаются в том, что она является устойчивой альтернативой ископаемому топливу и оказывает незначительное воздействие на окружающую среду и имеет потенциал для ее производства в любой стране. Минусы в том, что он производит энергию только тогда, когда светит солнце, требует значительного количества земли и что для некоторых солнечных технологий требуются редкие материалы.

Краткий обзор

Технология солнечной энергии становится все более конкурентоспособной по стоимости альтернативой ископаемому топливу, хотя на некоторых рынках остается довольно дорогой.

Преимущества солнечной энергии

Стабильный

Преимущество солнечной энергии заключается в том, что это устойчивая альтернатива ископаемому топливу. Хотя у ископаемого топлива есть срок годности, который может быстро приближаться, солнце, вероятно, будет существовать по крайней мере несколько миллиардов лет.

Низкое воздействие на окружающую среду

Солнечная энергия оказывает значительно меньшее воздействие на окружающую среду по сравнению с ископаемым топливом.Его выбросы парниковых газов несущественны, поскольку технология не требует сжигания топлива.Кроме того, хотя концентрирующие солнечные тепловые электростанции (CSP) сравнительно неэффективны в использовании воды в зависимости от типа используемой технологии, правильная технология значительно увеличивает эффективность, в то время как фотоэлектрические (PV) солнечные элементы не требуют воды при производстве электроэнергии.

Энергетическая независимость

Поскольку солнце светит по всему миру, оно делает каждую страну потенциальным производителем энергии, что обеспечивает большую энергетическую независимость и безопасность. Солнечная энергия не только обещает обеспечить безопасность и независимость на национальном уровне; солнечные панели могут быть установлены в отдельных домах, обеспечивая электроэнергию, которая не зависит от подключения к более крупной электросети.

173 000

Приблизительное количество тераватт солнечной энергии, излучаемой на Землю каждый день, – в 10 000 раз больше, чем ежедневное потребление энергии в мире.

Недостатки солнечной энергии

Прерывистость

Одна из самых больших проблем, связанных с технологиями использования солнечной энергии, заключается в том, что энергия вырабатывается только тогда, когда светит солнце. Это означает, что в ночное время и в пасмурные дни может прерываться подача электроэнергии. Дефицит, вызванный этим прерыванием, не был бы проблемой, если бы существовали недорогие способы хранения энергии, поскольку чрезвычайно солнечные периоды могут фактически генерировать избыточную мощность. Фактически, Германия – один из лидеров в области технологий солнечной энергии – сейчас сосредоточивает внимание на разработке адекватных накопителей энергии для решения этой проблемы.

Землепользование

Другая проблема заключается в том, что солнечная энергия может занять значительную часть земли и вызвать деградацию земель или потерю среды обитания для диких животных.В то время как солнечные фотоэлектрические системы могут быть прикреплены к уже существующим структурам, для более крупных фотоэлектрических систем может потребоваться от 3,5 до 10 акров на мегаватт, а для объектов CSP требуется от 4 до 16,5 акров на мегаватт.4 Тем не менее, воздействие можно уменьшить, разместив объекты в некачественных зонах или вдоль существующих транспортных и транспортных коридоров.

Дефицит материалов

Для производства некоторых солнечных технологий требуются редкие материалы. Однако это в первую очередь проблема фотоэлектрической технологии, а не технологии CSP. Кроме того, это не столько отсутствие известных запасов, сколько неспособность текущего производства удовлетворить будущий спрос: многие из редких материалов являются побочными продуктами других процессов, а не целью целенаправленных усилий по добыче полезных ископаемых. Переработка фотоэлектрических материалов и достижения в области нанотехнологий, которые увеличивают эффективность солнечных элементов, могут помочь увеличить предложение, но, возможно, поиск заменителей материалов, которые существуют в большем изобилии, может сыграть свою роль.

Оборотная сторона окружающей среды

Единственный экологический недостаток солнечной технологии заключается в том, что она содержит многие из тех же опасных материалов, что и электроника. Поскольку солнечная энергия становится все более популярной, проблема утилизации опасных отходов становится дополнительной проблемой. Однако при условии, что проблема надлежащей утилизации решена, сокращение выбросов парниковых газов, которое предлагает солнечная энергия, делает ее привлекательной альтернативой ископаемым видам топлива.

Источник

Солнечная энергетика сегодня и перспективы её дальнейшего развития

Мы живём в мире будущего, хотя не во всех регионах это заметно. В любом случае возможность развития новых источников энергии сегодня всерьёз обсуждается в прогрессивных кругах. Одним из самых перспективных направлений выступает солнечная энергетика.

На данный момент около 1% электроэнергии на Земле получается вследствие переработки солнечного излучения. Так почему мы до сих пор не отказались от других «вредных» способов, и откажемся ли вообще? Предлагаем ознакомиться с нашей статьей и попытаться самостоятельно ответить на этот вопрос.

Solnechnaya energetika preimushhestva

Как солнечная энергия преобразуется в электричество

Начнём с самого важного – каким образом солнечные лучи перерабатываются в электроэнергию.

Сам процесс носит название «Солнечная генерация». Наиболее эффективные пути его обеспечения следующие:

Рассмотрим каждый из них.

Фотовольтарика

В этом случае электрический ток появляется вследствие фотовольтарического эффекта. Принцип такой: солнечный свет попадает на фотоэлемент, электроны поглощают энергию фотонов (частиц света) и приходят в движение. В итоге мы получаем электрическое напряжение.

Подробнее можете почитать на Википедии: Фотовольтарический эффект

Именно такой процесс происходит в солнечных панелях, основу которых составляют элементы, преобразующие солнечное излучение в электричество.

Sostavlyayushhie solnechnoy paneli

Сама конструкция фотовольтарических панелей достаточно гибкая и может иметь разные размеры. Поэтому в использовании они очень практичны. К тому же панели имеют высокие эксплуатационные свойства: устойчивы к воздействию осадков и перепадам температур.

А вот как устроен отдельный модуль солнечной панели:

ustroysvo modulya solnechnoy paneli

О применении солнечных батарей в качестве зарядных устройств, источников питания частных домах, для облагораживания городов и в медицинских целях можно почитать в отдельной статье.

Современные солнечные панели и электростанции

Из недавних примеров можно отметить солнечные панели компании SistineSolar. Они могут иметь любой оттенок и текстуру в отличие от традиционных тёмно-синих панелей. А это значит, что ими можно «оформить» крышу дома так, как Вам заблагорассудится.

Solnechnyie paneli SistineSolar na kryishe

Другое решение предложили разработчики Tesla. Они выпустили в продажу не просто панели, а полноценный кровельный материл, перерабатывающий солнечную энергию. Черепица Solar Roof содержит встроенные солнечные модули и также может иметь самое разнообразное исполнение. При этом сам материал гораздо прочнее обычной кровельной черепицы, у Solar Roof даже гарантия бесконечная.

CHerepitsa Solar Roof v prodazhe

В качестве примера полноценной СЭС можно привести недавно построенную в Европе станцию с двусторонними панелям. Последние собирают как прямое солнечное излучение, так и отражающее. Это позволяет повысить эффективность солнечной генерации на 30%. Эта станция должна вырабатывать в год около 400 МВт*ч.

novaya solnechnaya elektrostnatsiya niderlandyi

Интерес вызывает и крупнейшая плавучая СЭС в Китае. Её мощность составляет 40 МВт. Подобные решения имеют 3 важных преимущества:

plavuchaya solnechnaya elektrostantsiya Kitay

Кстати, эта плавучая СЭС была построена на месте заброшенного угледобывающего предприятия.

Технология, основанная на фотовольтарическом эффекте, является наиболее перспективной на сегодня, и по оценкам экспертов солнечные панели уже в ближайшие 30-40 лет смогут производить около 20% мировой потребности электроэнергии.

Гелиотермальная энергетика

Тут подход немного другой, т.к. солнечное излучение используется для нагревания сосуда с жидкостью. Благодаря этому она превращается в пар, который вращает турбину, что приводит в выработке электричества.

По такому же принципу работают тепловые электростанции, только жидкость нагревается посредством сжигания угля.

Самый наглядный пример использования данной технологии – это станция Иванпа Солар в пустыне Мохаве. Она является крупнейшей в мире солнечной гелиотермальной электростанцией.

geliotermalnaya stantsiya Ivanpa Solar

Работает она с 2014 года и не использует никакого топлива для производства электричества – только экологически чистая солнечная энергия.

Котёл с водой располагается в башнях, которые Вы можете видеть в центре конструкции. Вокруг расположено поле из зеркал, направляющих солнечные лучи на вершину башни. При этом компьютер постоянно поворачивает эти зеркала в зависимости от расположения солнца.

Под воздействием концентрированной солнечной энергии вода в башне нагревается и становится паром. Так возникает давление, и пар начинает вращать турбину, вследствие чего выделяется электричество. Мощность этой станции – 392 мегаватт, что вполне можно сопоставить со средней ТЭЦ в Москве.

Интересно, что подобные станции могут работать и ночью. Это возможно благодаря помещению части разогретого пара в хранилище и постепенном его использовании для вращения турбины.

Солнечные аэростатные электростанции

Это оригинальное решение хоть и не получило широкого применения, но всё же имеет место быть.

Сама установка состоит из 4 основных частей:

Solnechnaya aerostatnaya elektrostantsiya ustroystvo

В чём преимущества солнечной энергетики

Проблемы развития солнечной энергетики

Несмотря на реализацию идей по поддержанию работы солнечных электростанций в ночное время, никто не застрахован от капризов природы. Затянутое облаками небо в течение нескольких дней значительно понижает выработку электричества, а ведь населению и предприятиям необходима его бесперебойная подача.

Строительство солнечной электростанции – удовольствие не из дешёвых. Это обусловлено необходимостью применять редкие элементы в их конструкции. Не все страны готовы растрачивать бюджеты на менее мощные электростанции, когда есть рабочие ТЭС и АЭС.

Для размещения таких установок необходимы большие площади, причём в местах, где солнечное излучение имеет достаточный уровень.

Как развита солнечная энергетика в России

К сожалению, в нашей стране пока во всю жгут уголь, газ и нефть, и наверняка Россия будет в числе последних, кто полностью перейдёт на альтернативную энергетику.

На сегодняшний день солнечная генерация составляет всего 0,03% энергобаланса РФ. Для сравнения в той же Германии этот показатель составляет более 20%. Частные предприниматели не заинтересованы во вложении средств в солнечную энергетику из-за долгой окупаемости и не такой уж высокой рентабельности, ведь газ у нас обходится гораздо дешевле.

В экономически развитых Московской и Ленинградской областях солнечная активность на низком уровне. Там строительство солнечных электростанций просто нецелесообразно. А вот южные регионы довольно перспективны.

Так одной из крупнейших в нашей стране является Орская СЭС. Она состоит из 100 тыс. модулей, выдающих суммарную мощность 25 МВт. Выработанное электричество подаётся в Единую энергетическую систему России (ЕЭС).

Orskaya SES orenbrgskaya obl

Самой мощной сегодня является СЭС Перово, расположенная в Республике Крым. Она выдаёт более 105 МВт, что на момент открытия станции было мировым рекордом. СЭС Перово состоит из 440 000 фотоэлектрических модулей и занимает площадь 259 футбольных полей.

SES Perovo Kryim

Вообще в Крыму солнечная энергетика неплохо развита – там более десятка солнечных электростанций мощностью от 20 МВт. Правда, вся полученная электроэнергия уходит сугубо на нужды полуострова.

К 2020 году в России планируется построить 4 крупных СЭС, мощность которых позволит увеличить долю солнечной энергии до 1% от всего энергобаланса страны.

Таким образом, уже сегодня можно с уверенностью сказать, что солнечная энергетика способна в недалёкой перспективе выступить полноценной альтернативой традиционным способам получения электроэнергии. И даже в России эта отрасль хоть и медленно, но развивается.

О выходе новых статей рассказываем в соцсетях

Источник

Солнечная энергия — огромный, неисчерпаемый и чистый ресурс

image loader

Солнечная выработка электроэнергии представляет собой чистую альтернативу электроэнергии из добываемого топлива, без загрязнения воздуха и воды, отсутствием глобального загрязнения окружающей среды и без каких-либо угроз для нашего общественного здравоохранения. Всего 18 солнечных дней на Земле содержит такое же количество энергии, какая хранится во всех запасах планеты угля, нефти и природного газа. За пределами атмосферы, солнечная энергия содержит около 1300 ватт на квадратный метр. После того, как она достигнет атмосферы, около одной трети этого света отражается обратно в космос, в то время как остальные продолжают следовать к поверхности Земли.

Усредненные по всей поверхности планеты, квадратный метр собирает 4,2 киловатт-часов энергии каждый день, или приблизительный энергетический эквивалент почти барреля нефти в год. Пустыни, с очень сухим воздухом и небольшим количеством облачности, могут получить более чем 6 киловатт-часов в день на квадратный метр в среднем в течение года.

Преобразование солнечной энергии в электричество

image loader

Фотоэлектрические (PV) панели и концентрация солнечной энергии (CSP) объектов захвата солнечного света могут превратить его в полезную электроэнергию. Крыши PV панели делают солнечную энергию жизнеспособной практически в каждой части Соединенных Штатов. В солнечных местах, таких как Лос-Анджелес или Феникс, система 5 киловатт производит в среднем 7000 до 8000 киловатт-часов в год, что примерно эквивалентно использованию электроэнергии типичного домохозяйства США.

В 2015 году почти 800 000 фотоэлектрических систем были установлены на крышах домов по всей территории Соединенных Штатов. Крупномасштабные PV проекты используют фотоэлектрические панели для преобразования солнечного света в электричество. Эти проекты часто имеют выходы в диапазоне сотен мегаватт, а это миллионы солнечных панелей, установленных на большой площади земли.

Как работают панели солнечных батарей

Солнечные фотоэлектрические (PV) панели на основе высокой, но удивительно простой технологии, которая преобразует солнечный свет непосредственно в электричество.

image loader

В 1839 году французский ученый Эдмонд Беккерель обнаружил, что некоторые материалы будут испускать искры электричества при ударе с солнечным светом. Исследователи обнаружили, что в ближайшее время это свойство, называемое фотоэлектрический эффект, может быть использовано; первая фотоэлектрическая (PV) ячейка изготовлена была из селена в конце 1800-х годов. В 1950 году ученые в Bell Labs пересматривали технологии и, используя кремний, произведенный в фотоэлементы, смогли преобразовать энергию солнечного света непосредственно в электричество.

Компоненты PV ячейки

Наиболее важными компонентами PV ячейки являются два слоя полупроводникового материала, обычно состоящего из кристаллов кремния. Сам по себе кристаллизирующийся кремний является не очень хорошим проводником электричества, поэтому в него намеренно добавляют примеси — процесс, называемый допинг-этап.

image loader

Нижний слой из фотоэлементов обычно состоит из легированного борома, который в связке с кремнием создает положительный заряд (p), в то время как верхний слой, легированный фосфором, взаимодействуя с кремнием — отрицательный заряд (n).

image loader

Лишние электроны из n-слоя могут покидать свои атомы, тогда как p-слой эти электроны захватывает. Лучи света «выбивают» электроны из атомов n-слоя, после чего они летят в p-слой занимать пустующие места. Таким способом электроны бегут по кругу, выходя из p-слоя, проходя через нагрузку и возвращаясь в n-слой.

image loader
беспилотные самолеты на солнечной энергии

Каждая ячейка генерирует очень мало энергии (несколько ватт), поэтому они сгруппированы в виде модулей или панелей. Панели затем либо используются как отдельные единицы или сгруппированы в более крупные массивы.

Переход к электрической системе с большим количеством солнечной энергии дает много преимуществ.

image loader

Перовскит «удешевит» солнечную энергию

image loader

Еще в 2013 году новость разнеслась по просторам сети: минерал перовскит произведет революцию в солнечной энергетике. Применение вместо кремния перовскита позволит снизить стоимость производства электроэнергии при помощи солнечных батарей. Перовскит (титанат кальция) был обнаружен в начале 19 века в Уральских горах, назван в честь Л.А. Перовского (известного любителя минералов). Как компонент фотоэлемента начал использоваться в 2009 году.

Батареи покрываются инновационным недорогим фотоэлементом, основное достоинство которого в том, что он может конвертировать в энергию намного большее количество частей солнечного света. Перовскиты представляют собой кристаллическую структуру, которая позволяет с максимальной эффективностью впитывать солнечный свет. По предварительным оценкам использование батарей на основе перовскита может снизить стоимость киловатта энергии в семь раз.

«Главное преимущество новых фотоэлементов заключается не столько в эффективности, сколько в том, что материал чертовски дешев. Батареи на основе перовскита, в которых не используется кремний, могут сделать солнечную энергетику по-настоящему массовой».

Солнечная энергия для ЦОД

10 % всей производимой в мире электроэнергии потребляют серверные фермы. Так как энергоэффективные сети и возобновляемые источники энергии сейчас внедряются во всех отраслях, ЦОД не остались в стороне. Негативное влияние серверных ферм на окружающую среду давно уже на устах экологов. Поэтому владельцы дата-центров стремятся к снижению негативного воздействия своих ЦОД, прибегая к передовым энергосберегающим и «зеленым» технологиям выработки электроэнергии, сюда можно отнести фрикулинг, системы локальных генерирующих мощностей на базе возобновляемых источников энергии.

image loader

Как выход — солнечная электростанция рядом с серверной фермой, в тех странах, где это позволяют климатические условия. Она идеальна для серверных ферм, которые развернуты в тропиках или субтропиках. Ведь использование солнечных панелей на крыше ЦОД, кроме того что предоставит «зеленую энергию», так еще и поможет уменьшить тепловую нагрузку на здание, так как создаваемая ими тень минимизирует количество поглощаемого крышей тепла. Гелиоэлектростанция снизит общий негативный эффект дата-центра на экологию, и повысит надежность ЦОД расположенных в регионах, где наблюдаются перебои в работе центральной электросети.

image loader
крупная электростанция на базе возобновляемых источников энергии рядом с дата-центром Apple в городе Мейден, штат Северная Каролина (США)

Switch совместно с энергетической компанией Nevada Power начала сооружение рядом с Лас-Вегасом солнечной станции Switch Station мощностью 100 МВт. В американских СМИ компанию Switch называют «возмутителям спокойствия» на рынке коммерческих ЦОД, это один из крупнейших игроков, данной отрасли. Компания занимается сооружением и поддержкой datacenter facilities – зданий и и инженерной инфраструктуры без собственно вычислительной аппаратуры, ее основная модель взаимодействия с клиентами – colocation.

image loader
крупнейшая в мире гелиотермальная электростанция Айванпа мощностью 400 МВт

В 2015 году США и Япония начали разрабатывать новый механизм электроснабжения ЦОД за счет солнечной энергии. Проект предполагает исследование новых возможностей «… использования связки генерирующих мощностей на базе солнечной энергии и систем класса HVDC (высокое напряжение постоянного тока), применяемых для распределения генерируемой солнечными батареями электроэнергии на уровне ЦОД». Такое комбинирование HVDC и солнечных панелей даст возможность развернуть единую систему резервного электропитания на базе аккумуляторных батарей, при этом можно будет экономить на капитальных и эксплуатационных расходах.

Интересно

Немецкий архитектор Андре Броезель из компании Rawlemon создал солнечую батарею в форме движущего стеклянного шара. Он называет его генератором нового поколения, который будет ловить максимальное количество лучей, так как он оснащен системой отслеживания перемещения солнца и датчиками смены погоды, а это на 35 % эффективней в сравнении с стандартными солнечными батареями.

image loader

Японская энергетическая компания Shimizu Corporation в 2015 году обьявила о своем намерение построить крупную солнечную электростанцию на естественном спутнике нашей планеты — Луне. Электростанция в виде колец с солнечными батареями будет опоясывать Луну по примеру планеты Сатурн и передавать энергию на Землю. От такой солнечной станции Shimizu Corporation ожидает 13 тысяч тераватт энергии/ год. Еще не известна стоимость и дата начала такого космического строительства.

image loader

В институте прогрессивной архитектуры в Каталонии разработали солнечную панель, которая может функционировать на растениях, мхе и почве. Плюсом такой технологии является отказ от опасных токсичных материалов и тяжелых металлов в производстве солнечных панелей. Тут используются специальные бактерии в крохотных топливных ячейках, размещенных в земле под корнями растений. Бактерии нужны для выработки дешевой энергии в мини-батареях. Растения будут обеспечивать жизненный цикл бактерий, а вода служить в качестве подпитки для всей системы. Такая инновационная система может работать на территориях, где солнечного света не так уж и много, если заменить растения мхом, так как он может расти в тени.

Источник

Комфорт
Adblock
detector