Что такое коэффициент объемного расширения

obruchalnye koltsa koltsa liubov 157902 1280x720 Вес тела
Содержание
  1. Коэффициент расширения
  2. Что такое тепловое расширение?
  3. Для чего нужен коэффициент?
  4. Особенности измерения
  5. Коэффициент термического расширения
  6. Содержание
  7. Коэффициент объёмного теплового расширения
  8. Коэффициент линейного теплового расширения
  9. См. также
  10. Ссылки
  11. Смотреть что такое «Коэффициент термического расширения» в других словарях:
  12. Коэффициент объёмного расширения
  13. Содержание
  14. Коэффициент объёмного теплового расширения
  15. Коэффициент линейного теплового расширения
  16. См. также
  17. Ссылки
  18. Смотреть что такое «Коэффициент объёмного расширения» в других словарях:
  19. Тепловое расширение твердых и жидких тел
  20. Тепловое расширение твердых и жидких тел
  21. Зависимость объёма тел от температуры
  22. Линейное расширение твёрдых тел
  23. Объёмное расширение твёрдых тел
  24. Учёт теплового расширения в технике
  25. Терморегулятор
  26. Тепловое расширение жидкостей

Коэффициент расширения

Когда твердое тело и жидкость нагреваются, их температура повышается. Это приводит к тому, что в определенной мере увеличивается их объем при повышении температуры с каждым градусом. Свойство, которое характеризует отношение температуры и объема, называется коэффициентом расширения. У разных веществ коэффициент имеет разное значение, также может меняться у одного вещества в зависимости от того, какую оно имеет температуру. Принцип используется в работе термометров и других инструментов, используемых для измерения температуры.

image005

Что такое тепловое расширение?

Тепловым расширение принято считать способность тел к расширению, когда они нагреваются. Это означает, что при повышении температуры изменяются их линейные и объемные размеры. Когда происходит охлаждение тела, процесс будет обратным – объем уменьшается.

Для чего нужен коэффициент?

Коэффициент теплового расширения описывает, как изменяется размер объекта, когда происходит повышение его температуры. В зависимости от конкретного использования, коэффициент расширения может быть линейный или объемный. Если тело твердое, требуется узнать изменение его длины или конкретной области, поэтому применяется коэффициент линейного расширения. Для жидкостей и газов используется только температурное расширение, коэффициент линейного теплового расширения для них не подходит, потому что приобретают форму емкости, в которой находятся.

image006

Коэффициент объемного теплового расширения показывает, какое относительное изменение объема тела при постоянном давлении и изменении его температуры на 1 градус. Выражается формулой:

image007

Коэффициент линейного теплового расширения показывает относительное изменение длины тела, когда происходит его нагревание.

image008

Коэффициент линейного теплового расширения может иметь разные значения, если направления измерений будут разными.

Теоретически рассчитать коэффициент линейного объема можно, зная коэффициент объемного расширения (α V ≈ 3 α L).

При нагревании некоторых материалов происходит их сжатие, а не расширение. У них коэффициент расширения (линейный) будет иметь отрицательное значение, к примеру, вода (коэффициент расширения с отрицательным значением при температуре 0-3,984 °С).

Особенности измерения

Тепловое расширение тел, независимо от их фазового состояния, измеряется дилатометром. Принцип действия практически всех приборов основан на измерении сдвигов (малых и сверхмалых), которые возникают вследствие изменения размеров тела относительно шкалы дилатометра. Прибор позволяет определить коэффициент теплового расширения даже в тех случаях, когда смещения микроскопические.

Сегодня существуют такие типы приборов:

Чаще всего используются тепловые дилатометры, которые позволяют определять объемное и линейное расширение, происходящее под воздействием температуры.

Источник

Коэффициент термического расширения

Коэффициент теплового расширения — величина, характеризующая относительную величину изменения объёма или линейных размеров тела с увеличением температуры на 1° К, при постоянном давлении. В соответствии с этим различают:

Содержание

Коэффициент объёмного теплового расширения

Коэффициент линейного теплового расширения

Коэффициент линейного теплового расширения показывает относительное изменение длины тела при нагревании на температуру ΔT:

5dec48fa98df6714f02caafdff1cfc45 48cd00d5e876b9d115ac353ce21e1390— относительное изменение линейного размера тела при нагревании его на dT градусов при постоянном давлении,

В общем случае, коэффициент линейного теплового расширения может быть различен при измерении вдоль разных направлений: αx, αy, αz. Для изотропных тел αx = αy = αz и αV = 3αL;.

См. также

Ссылки

Смотреть что такое «Коэффициент термического расширения» в других словарях:

коэффициент термического расширения — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN coefficient of thermal expansionCTE … Справочник технического переводчика

Сотовый поликарбонат — Эта статья предлагается к удалению. Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/7 сентября 2012. Пока процесс обсуждения не завершён, статью можн … Википедия

ситаллы — стеклокристаллические материалы, состоящие из одной или нескольких кристаллических фаз, равномерно распределённых в стекловидной фазе. Высокая прочность, твёрдость, химическая и термическая стойкость, низкий температурный коэффициент расширения.… … Энциклопедический словарь

Пластические массы — пластмассы, пластики, материалы, содержащие в своём составе полимер (См. Полимеры), который в период формования изделий находится в вязкотекучем или высокоэластичном состоянии, а при эксплуатации в стеклообразном или кристаллическом… … Большая советская энциклопедия

Гей-Люссака законы — 1) закон теплового расширения газов: объём V данной массы идеального газа при постоянном давлении линейно возрастает с температурой: Vt = V0(1 + αt), где V0 и Vt соответственный первоначальный объём газа и при температуре t, α изобарный… … Энциклопедический словарь

Колебания кристаллической решётки — один из основных видов внутренних движений твёрдого тела, при котором составляющие его частицы (атомы или ионы) колеблются около положений равновесия узлов кристаллической решётки. К. к. р., например, в виде стоячих или бегущих звуковых… … Большая советская энциклопедия

Лазерная нанокерамика — Эта статья предлагается к удалению. Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/17 октября 2012. Пока процесс обсужден … Википедия

Магниевые сплавы — сплавы на основе магния. Наиболее прочные, в том числе и наиболее жаропрочные, М. с. разработаны на основе систем магний металл с ограниченной растворимостью в твёрдом магнии. Вследствие высокой химической активности магния выбор металлов … Большая советская энциклопедия

глазурь — и; ж. [нем. Glasur от Glas стекло]. 1. Стекловидное покрытие на керамических изделиях, закреплённое обжигом. Покрывать кувшины глазурью. 2. Застывший сахарный сироп. Орехи в глазури. // Слой густого сладкого сиропа (из сахара, шоколада и т.п.), в … Энциклопедический словарь

Кирпич — У этого термина существуют и другие значения, см. Кирпич (значения) … Википедия

Источник

Коэффициент объёмного расширения

Коэффициент теплового расширения — величина, характеризующая относительную величину изменения объёма или линейных размеров тела с увеличением температуры на 1° К, при постоянном давлении. В соответствии с этим различают:

Содержание

Коэффициент объёмного теплового расширения

Коэффициент линейного теплового расширения

Коэффициент линейного теплового расширения показывает относительное изменение длины тела при нагревании на температуру ΔT:

5dec48fa98df6714f02caafdff1cfc45 48cd00d5e876b9d115ac353ce21e1390— относительное изменение линейного размера тела при нагревании его на dT градусов при постоянном давлении,

В общем случае, коэффициент линейного теплового расширения может быть различен при измерении вдоль разных направлений: αx, αy, αz. Для изотропных тел αx = αy = αz и αV = 3αL;.

См. также

Ссылки

Смотреть что такое «Коэффициент объёмного расширения» в других словарях:

коэффициент объёмного расширения — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN coefficient of cubical expansion … Справочник технического переводчика

коэффициент объёмного расширения — tūrinio plėtimosi koeficientas statusas T sritis fizika atitikmenys: angl. volume expansion coefficient vok. Raumausdehnungskoeffizient, m rus. коэффициент объёмного расширения, m pranc. coefficient de dilatation cubique, m; coefficient de… … Fizikos terminų žodynas

Коэффициент теплового расширения — Размерность Θ−1 Единицы измерения СИ К−1 … Википедия

Коэффициент линейного расширения — Коэффициент теплового расширения величина, характеризующая относительную величину изменения объёма или линейных размеров тела с увеличением температуры на 1° К, при постоянном давлении. В соответствии с этим различают: Содержание 1 Коэффициент… … Википедия

Коэффициент термического расширения — Коэффициент теплового расширения величина, характеризующая относительную величину изменения объёма или линейных размеров тела с увеличением температуры на 1° К, при постоянном давлении. В соответствии с этим различают: Содержание 1 Коэффициент… … Википедия

Объёмный фактор — Объёмный коэффициент (Formation Volume Factor, коэффициент объёмного расширения) газа/нефти/воды отношение объёма газа/нефти/воды в пластовых условиях (в м³) к объёму газа/нефти/воды, приведённого к атмосферному давлению и температуре 20 °C … Википедия

Тепловое расширение — изменение размеров тела в процессе его нагревания. Количественно Т. р. при постоянном давлении характеризуется изобарным коэффициентом расширения (объёмным коэффициентом Т. р.) Т2 > T1, V исходный объём тела (разность температур T2 T1… … Большая советская энциклопедия

Газы (агрегатное состояние вещества) — Газы (французское gaz; название предложено голланским учёным Я. Б. Гельмонтом), агрегатное состояние вещества, в котором его частицы не связаны или весьма слабо связаны силами взаимодействия и движутся свободно, заполняя весь предоставленный им… … Большая советская энциклопедия

Газы — I Газы (французское gaz; название предложено голланским учёным Я. Б. Гельмонтом агрегатное состояние вещества, в котором его частицы не связаны или весьма слабо связаны силами взаимодействия и движутся свободно, заполняя весь… … Большая советская энциклопедия

Моделирование физическое — вид моделирования, который состоит в замене изучения некоторого объекта или явления экспериментальным исследованием его модели (См. Модель), имеющей ту же физическую природу. В науке любой эксперимент, производимый для выявления… … Большая советская энциклопедия

Источник

Тепловое расширение твердых и жидких тел

Содержание:

Тепловое расширение – это изменение размеров и формы тел при изменении температуры. Математически можно высчитать объемный коэффициент расширения, позволяющий спрогнозировать поведение газов и жидкостей в изменяющихся внешних условиях. Чтобы получить такие же результаты для твердых тел, необходимо учитывать коэффициент линейного расширения.

На странице -> решение задач по физике собраны решения задач и заданий с решёнными примерами по всем темам физики.

Тепловое расширение твердых и жидких тел

Тепловое расширение (также используется термин «термическое расширение») — это изменение линейных размеров и формы тела при изменении его температуры. Количественно тепловое расширение жидкостей и газов при постоянном давлении характеризуется изобарным коэффициентом расширения (объёмным коэффициентом теплового расширения). Для характеристики теплового расширения твёрдых тел дополнительно вводят коэффициент линейного теплового расширения.

Зависимость объёма тел от температуры

Частицы твёрдого тела занимают друг относительно друга определённые положения, но не остаются в покое, а совершают колебания. При нагревании тела увеличивается средняя скорость движения частиц. Средние расстояния между частицами при этом увеличиваются, поэтому увеличиваются линейные размеры тела, а следовательно, увеличивается и объём тела.

При охлаждении линейные размеры тела сокращаются, и объём его уменьшается.

При нагревании, как известно, тела расширяются, а при охлаждении сжимаются. Качественная сторона этих явлений была уже рассмотрена в начальном курсе физики.

Наша задача теперь — ознакомиться с количественными законами этих явлений.

Линейное расширение твёрдых тел

Твёрдое тело при данной температуре имеет определённую форму и определённые линейные размеры. Увеличение линейных размеров тела при нагревании называется тепловым линейным расширением.

Измерения показывают, что одно и то же тело расширяется при различных температурах по-разному: при высоких температурах обычно сильнее, чем при низких. Но это различие в расширении столь невелико, что при сравнительно небольших изменениях температуры им можно пренебречь и считать, что изменение размеров тела пропорционально изменению температуры.

В начальном курсе физики было установлено, что различные вещества по-разному расширяются при нагревании: одни сильнее, другие слабее; железо, например, расширяется сильнее стекла и слабее меди.

Чтобы количественно характеризовать это важное тепловое свойство тел, введена особая величина, называемая коэффициентом линейного расширения.

Пусть твёрдое тело при температуре 0°С имеет длину 332422 rF9XytOа при температуре его длина становится 332424Значит, при изменении температуры на длина тела увеличивается на 332428Предполагая, что увеличение длины при нагревании на каждый градус идёт равномерно, находим, что при нагревании на 1°С вся длина тела увеличилась на 332500каждая единица длины на

332509(1)

Величина 332512(греч. «бэта»), характеризующая тепловое расширение тела, называется коэффициентом линейного расширения.

Формула (1) показывает, что при t = 1°С и 332516= 1 ед. длины величина 332512равна 332519т. е. коэффициент линейного расширения численно равен удлинению, которое получает при нагревании на 1°С стержень, имевший при 0°С длину, равную единице длины.

Из формулы (1) следует, что наименованием коэффициента 332512является 332524

Формулу (1) можно записать в следующем виде:

332526

Отсюда легко определить длину тела при любой температуре, если известны его начальная длина и коэффициент линейного расширения.

Ниже в таблице приведены коэффициенты линейного расширения некоторых веществ, определённые на опыте.

332528

Объёмное расширение твёрдых тел

При тепловом расширении твёрдого тела с увеличением линейных размеров тела увеличивается и его объём. Аналогично коэффициенту линейного расширения для характеристики объёмного расширения можно ввести коэффициент объёмного расширения. Опыт показывает, что так же, как и в случае линейного расширения, можно без большой ошибки принять, что приращение объёма тела пропорционально повышению температуры.

332545(2)

При V0 = 1 ед. объёма и t = 1°С величина а равна Vt— V0, т. е. коэффициент объёмного расширения численно равен приросту объёма тела при нагревании на 1°С, если при 0°С объём был равен единице объёма.

По формуле (2), зная объём тела при температуре 0°С, можно вычислить объём его при любой температуре :

332573

Установим соотношение между коэффициентами объёмного и линейного расширения.

Можно написать следующее равенство:

332583

332584

В этой формуле величины 332586и 332588настолько малы, что ими можно пренебречь и написать:

332594

Коэффициент объёмного расширения твёрдого тела равен утроенному коэффициенту линейного расширения.

Учёт теплового расширения в технике

Из таблицы на странице 124 видно, что коэффициенты расширения твёрдых тел очень малы. Однако самые незначительные, изменения размеров тел при изменении температуры вызывают появление огромных сил.

Опыт показывает, что даже для небольшою удлинения твёрдого тела требуются огромные внешние силы. Так, например, чтобы увеличить длину стального стержня сечением в 1 см 2 приблизительно на 0,0005 его первоначальной длины, необходимо приложить силу в 1000 кГ. Но такой же величины расширение этого стержня получается при нагревании его на 50°С. Ясно поэтому, что, расширяясь при нагревании (или сжимаясь при охлаждении) на 50°С, стержень будет оказывать давление около 1000 332679на те тела, которые будут препятствовать его расширению (сжатию).

Огромные силы, возникающие при расширении и сжатии твёрдых тел, учитываются в технике. Так, например, один из концов моста не закрепляют неподвижно, а устанавливают на катках; железнодорожные рельсы не укладывают вплотную, а оставляют между ними просвет; паропроводы подвешивают на крюках, а между отдельными трубами устанавливают компенсаторы, изгибающиеся при удлинении труб паропровода. По этой же причине котёл паровоза закрепляется только на одном конце, другой же его конец может свободно перемещаться.

Огромное значение имеет расширение от нагревания при точных измерениях. В самом деле, если масштабная линейка или калибр, которыми проверяются размеры изготовленной части машины, значительно изменяют свою величину, то необходимой точности при измерении не получится. Для избежания грубых ошибок при измерении или контроле изготовленные изделия заблаговременно приносят в помещение, где производятся измерения, чтобы они успели принять температуру калибров. Самые калибры и измерительные инструменты делают из материала с очень малым коэффициентом расширения. Таким материалом, например, является особая железо-никелевая сталь — инвар, с коэффициентом расширения 0,0000015.

332611

Рис. 132а. Схема устройства металлического термометра.

Как показывает таблица на странице 124, платина и стекло имеют одинаковый коэффициент расширения; поэтому можно вплавлять платину в стекло, причём после охлаждения не происходит ни ослабления связи обоих веществ, ни растрескивания стекла. В электрических лампочках в стекло вплавляется железо-никелевая проволока, имеющая такой же коэффициент расширения, как и стекло. Заслуживает внимания очень малый коэффициент расширения у кварцевого стекла. Такое стекло выдерживает, не лопаясь и не растрескиваясь, неравномерное нагревание или охлаждение. Так, например, в раскалённую докрасна колбочку из кварцевого стекла можно вливать холодную воду, тогда как колба из обычного стекла при таком опыте лопается. Указанная особенность кварцевого стекла является следствием малости его коэффициента теплового расширения.

Терморегулятор

Две одинаковые полоски из разных металлов, например из железа и латуни, склёпанные вместе, образуют так называемую биметаллическую пластинку. При нагревании такие пластинки изгибаются вследствие того, что одна расширяется больше другой. Та из полосок, которая расширяется больше, оказывается всегда с выпуклой стороны. Это свойство биметаллических пластинок широко используется для измерения температуры и её регулирования.

1. Металлический термометр. Этот прибор представляет собой биметаллическую дугу (рис. 132, а), конец которой A прочно закреплён, а конец В свободен. Дуга соединена в В со стрелкой С. При изменении температуры дуга закручивается или раскручивается, двигая соответственно стрелку. Шкала проградуирована по обыкновенному термометру. Если к концу стрелки прикрепить перо, то колебания температуры можно записывать на специальной бумажной ленте. По такому принципу устроен термограф.

2. Термостат. Так называется прибор для установления постоянной температуры.

332634

Рас. 1326. Принцип устройства регулятора температуры с биметаллической пластинкой.

На рисунке 132б изображён принцип устройства одного из типов регуляторов температуры. Биметаллическая дуга С при изменении температуры закручивается или раскручивается. К её свободному концу прикреплена металлическая пластинка М, которая при раскручивании дуги прикасается к контакту К, а при закручивании отходит от него. Если, например, контакт К и пластинка М присоединены к концам электрической цепи АА1 содержащей нагревательный прибор, то при соприкосновении К и М электрическая цепь замкнётся; прибор начнёт нагревать помещение. Биметаллическая дуга С при нагревании начнёт закручиваться и при определённой температуре отсоединит пластинку М от контакта К цепь разорвётся, нагревание прекратится. При охлаждении дуга С, раскручиваясь, снова заставит включиться нагревательный прибор: таким образом, температура помещения будет поддерживаться на заданном уровне.

332657

Рис. 132в. Прибор для определения коэффициента расширения жидкостей.

Тепловое расширение жидкостей

В отношении жидкостей имеет смысл говорить лишь об объёмном расширении. У жидкостей оно значительно больше, чем у твёрдых тел. Как показывает опыт, зависимость объёма жидкости от температуры выражается такой же формулой, что и для твёрдых тел.

Если при 0°С жидкость занимает объём V0, то при температуре t её объём Vt будет:

332669

Для измерения коэффициента расширения жидкости применяется стеклянный сосуд термометрической формы, объём которого известен (рис. 132в). Шарик с трубкой наполняют доверху жидкостью и нагревают весь прибор до определённой температуры; при этом часть жидкости выливается из сосуда. Затем сосуд с жидкостью охлаждают в тающем льду до 0°. При этом жидкость наполнит уже не весь сосуд, и незаполненный объём покажет, на сколько жидкость расширилась при нагревании. Зная коэффициент расширения стекла, можно довольно точно вычислить и коэффициент расширения жидкости.

Коэффициент расширения некоторых жидкостей:

Спирт. 0,00110 Вода (от 5 до 8°С). 0,00002

Керосин. 0,00100 Ртуть. 0,00018

Расширение воды при нагревании отличается от расширения других жидкостей. Если нагревать воду от 0°С, то можно заметить, что при нагревании до 4°С её объём не увеличивается, а уменьшается. При нагревании же выше 4°С объём воды увеличивается.

Наибольшую плотность, равную 1 332684вода имеет при 4°С. Изменение плотности воды в зависимости от температуры изображено графически на рисунке 133.

332686

Рис. 133. График изменения плотности воды в зависимости от температуры.

Особенностью расширения воды объясняется то, что вода в прудах и озёрах не промерзает зимой до дна. При охлаждении воды осенью верхние остывшие слои опускаются на дно, а на их место снизу поступают более тёплые слои. Такое перемещение слоёв происходит только до тех пор, пока вода не примет температуру 4°С. При дальнейшем охлаждении верхние слои не опускаются вниз, а, постепенно охлаждаясь, остаются наверху и, наконец, замерзают.

Услуги по физике:

Лекции по физике:

Присылайте задания в любое время дня и ночи в 220487whatsapp.

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Источник

Комфорт
Adblock
detector