Что такое коэффициент корреляции простыми словами

para art risunok lyubov polet serdce schaste 31590 1280x720 Вес тела
Содержание
  1. Корреляция: это простыми словами
  2. Что представляет собой корреляция?
  3. Что такое корреляция?
  4. Корреляция цены на нефть и курса доллара
  5. Корреляция в управлении инвестиционными активами
  6. Коэффициент корреляции
  7. Содержание
  8. Коэффициент корреляции
  9. Коэффициент корреляции Пирсона
  10. Коэффициент корреляции Кенделла
  11. Коэффициент корреляции Спирмена
  12. Свойства коэффициента корреляции
  13. Корреляционный анализ
  14. Ограничения корреляционного анализа
  15. Область применения
  16. Ложная корреляция
  17. См. также
  18. Смотреть что такое «Коэффициент корреляции» в других словарях:
  19. Что такое корреляция акций и облигаций?
  20. Роль корреляции в управлении портфелем
  21. Как победить выгорание
  22. Как изменяется корреляция со временем
  23. Корреляция различных классов активов с индексом S&P 500
  24. Корреляция и волатильность
  25. Количество дней в каждом десятилетии, когда S&P 500 сдвинулся на 3% и более
  26. Как посчитать корреляцию
  27. 36-месячная скользящая корреляция разных классов активов
  28. Как рассчитать корреляцию в «Экселе»
  29. Что в итоге
  30. Коэффициент корреляции: что нужно знать, формула, пример расчёта в Excel
  31. Что такое корреляция простыми словами
  32. Ложные корреляции
  33. Корреляция и диверсификация
  34. Коэффициент корреляции и ПАММ-счета
  35. Коэффициент корреляции в Excel и формула расчёта

Корреляция: это простыми словами

Korrelyatsiya eto prostymi slovami

Что представляет собой корреляция?

Термин «корреляция» пугает многих людей и кажется чем-то сложным и непонятным. Однако на практике ничего устрашающего в ней нет. Корреляция – это всего лишь показатель, показывающий зависимость между событиями или объектами.

Данное понятие применяется в экономическом и статистическом анализе, психологии, биологии, математике. Например, если посмотреть на небо и увидеть густые и темные тучи, то можно прийти к выводу, что скоро пойдет дождь. Однако наше умозаключение не дает 100% гарантии. Это и является отличительной особенностью корреляцию от линейной зависимости.

Что такое корреляция?

Корреляция – это взаимозависимость случайных факторов. Она отображает приближенную взаимосвязь и не дает точных ответов. Например, в стране выросла безработица и увеличилось количество преступлений. Можно предположить, что на второй фактор повлияли первый. Но на уровень преступности также влияют воспитание, менталитет людей, уровень образования. Составить точный прогноз нереально, так как всегда есть дополнительные факторы.

Связь может быть трех видов:

Например, повышения уровня радиации негативно сказывается на здоровье человека. Межу событиями имеется обратно пропорциональная зависимость – увеличения радиации приводит к ухудшению здоровья. Коэффициент корреляции при этом имеет отрицательное значение.

Некоторые события или явления практически никак не связаны друг с другом. Утром у вас разрядился телефон, а вчера в маршрутке вам на ногу наступил мужчина. Ни одно из событий не влияет на другое. В данном случае коэффициент корреляции равен нулю.

Если коэффициент больше нуля и стремится к 1, то такая корреляция называется положительной. Она показывает прямую взаимосвязь между событиями. Например, чем выше уровень знаний, тем выше шансы поступить в университет на бюджет.

Анализ корреляционного соотношения помогает выдвинуть гипотезу о причинно-следственных связях.

Корреляция цены на нефть и курса доллара

Цена на нефть и курс американского доллара имеют обратную корреляционную связь. При росте стоимости «черного золота» курс доллара снижается и наоборот.

США обладают самой мощной промышленностью в мире и на ее нужды требуется просто огромное количество нефти. В то же время Штаты входят в первую десятку стран по уровню добычи этого природного ресурса. При этом США значительную часть добытой нефти экспортируют, что вызывает дефицит в промышленности. Для его покрытия американцы ежегодно импортируют свыше 8 миллиардов баррелей нефти.

Данного объема достаточно для влияния на курс национальной валюты. Увеличение спроса США на нефть приводит к увеличению цены на международном рынке. В свою очередь, рост объемов импорта влияет на стоимость произведенных товаров. В итоге на валютном рынке наблюдается избыток американской валюты, и ее курс начинает падать.

Корреляция в управлении инвестиционными активами

Корреляция активно используется инвесторами при формировании и управлении своих инвестиционных портфелях. Логично, что нельзя держать все свои активы в одном месте. Диверсификация позволяет значительно снизить риски.

Например, инвестор покупает акции одной крупной компании и нескольких мелких. Коэффициент корреляции акций гигантов отрасли и небольших предприятий приблизительно равен +0,8. Это достаточно большое значение и оно характеризует прямую зависимость между объектами. При падении акции крупной компании существует большая вероятность, что стоимость ценных бумаг небольших фирм тоже снизится существенная. В данном случае лучше подбирать активы таким образом, что корреляционные связи были минимальными.

Для этого, например, инвестор может составить свой портфель из акций и облигаций или акций и казначейских векселей. Облигации между собой, как и акции, также имеют прямую связь. Их коэффициент еще выше. Однако между облигациями и акциями такой зависимости нет, что и позволяет инвестору снизить риски.

Также наблюдается зависимость между странами и даже регионами. Чем ближе они находятся, тем выше коэффициент корреляции. Например, для Канады и США он составляет 0,9. В то же время для Японии и США он на 4 десятых меньше. Собственно, инвестору более выгодно покупать активы эмитентов из разных регионов.

Золото и ценные бумаги практически не коррелируются. Однако серебро и золото очень зависимы друг от друга, так же, как и евро и американский доллар. Их использование в рамках одного инвестиционного портфеля нецелесообразно.

Корреляция – это удобный и необходимый инструмент в различных сферах жизни. Она не является панацеей, но позволяет достаточно точно установить причинно-следственные связи между явлениями.

Источник

Коэффициент корреляции

Корреля́ция — статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом, изменения одной или нескольких из этих величин приводят к систематическому изменению другой или других величин. Математической мерой корреляции двух случайных величин служит коэффициент корреляции.

Корреляция может быть положительной и отрицательной (возможна также ситуация отсутствия статистической взаимосвязи — например, для независимых случайных величин). Отрицательная корреляция — корреляция, при которой увеличение одной переменной связано с уменьшением другой переменной, при этом коэффициент корреляции отрицателен. Положительная корреляция — корреляция, при которой увеличение одной переменной связано с увеличением другой переменной, при этом коэффициент корреляции положителен.

Автокорреляция — статистическая взаимосвязь между случайными величинами из одного ряда, но взятых со сдвигом, например, для случайного процесса — со сдвигом по времени.

Метод обработки статистических данных, заключающийся в изучении коэффициентов (корреляции) между переменными, называется корреляционным анализом.

Содержание

Коэффициент корреляции

Коэффициент корреляции Пирсона

Для метрических величин применяется коэффициент корреляции Пирсона, точная формула которого была введена Фрэнсисом Гальтоном:

Пусть X,Y — две случайные величины, определённые на одном вероятностном пространстве. Тогда их коэффициент корреляции задаётся формулой:

394cbc477a1f1860b13514d7fe9229c9,

где cov обозначает ковариацию, а D — дисперсию, или, что то же самое,

a831a7376fa0bb074fdca94a1ea85a76,

где символ 56bda1c0c911f27b99dec7ff663a12c2обозначает математическое ожидание.

Для графического представления подобной связи можно использовать прямоугольную систему координат с осями, которые соответствуют обеим переменным. Каждая пара значений маркируется при помощи определенного символа. Такой график называется «диаграммой рассеяния».

Метод вычисления коэффициента корреляции зависит от вида шкалы, к которой относятся переменные. Так, для измерения переменных с интервальной и количественной шкалами необходимо использовать коэффициент корреляции Пирсона (корреляция моментов произведений). Если по меньшей мере одна из двух переменных имеет порядковую шкалу, либо не является нормально распределённой, необходимо использовать ранговую корреляцию Спирмена или τ (тау) Кендала. В случае, когда одна из двух переменных является дихотомической, используется точечная двухрядная корреляция, а если обе переменные являются дихотомическими: четырёхполевая корреляция. Расчёт коэффициента корреляции между двумя недихотомическими переменными не лишён смысла только тогда, кода связь между ними линейна (однонаправлена).

Коэффициент корреляции Кенделла

Используется для измерения взаимной неупорядоченности.

Коэффициент корреляции Спирмена

Свойства коэффициента корреляции

Корреляционный анализ

Корреляционный анализ — метод обработки статистических данных, заключающийся в изучении коэффициентов ( корреляции) между переменными. При этом сравниваются коэффициенты корреляции между одной парой или множеством пар признаков для установления между ними статистических взаимосвязей.

Цель корреляционного анализа — обеспечить получение некоторой информации об одной переменной с помощью другой переменной. В случаях, когда возможно достижение цели, говорят, что переменные коррелируют. В самом общем виде принятие гипотезы о наличии корреляции означает что изменение значения переменной А, произойдет одновременно с пропорциональным изменением значения Б: если обе переменные растут то корреляция положительная, если одна переменная растёт, а вторая уменьшается, корреляция отрицательная.

Ограничения корреляционного анализа

400px corr

Область применения

Данный метод обработки статистических данных весьма популярен в экономике и социальных науках (в частности в психологии и социологии), хотя сфера применения коэффициентов корреляции обширна: контроль качества промышленной продукции, металловедение, агрохимия, гидробиология, биометрия и прочие.

Популярность метода обусловлена двумя моментами: коэффициенты корреляции относительно просты в подсчете, их применение не требует специальной математической подготовки. В сочетании с простотой интерпретации, простота применения коэффициента привела к его широкому распространению в сфере анализа статистических данных.

Ложная корреляция

Часто заманчивая простота корреляционного исследования подталкивает исследователя делать ложные интуитивные выводы о наличии причинно-следственной связи между парами признаков, в то время как коэффициенты корреляции устанавливают лишь статистические взаимосвязи.

В современной количественной методологии социальных наук, фактически, произошел отказ от попыток установить причинно-следственные связи между наблюдаемыми переменными эмпирическими методами. Поэтому, когда исследователи в социальных науках говорят об установлении взаимосвязей между изучаемыми переменными, подразумевается либо общетеоретическое допущение, либо статистическая зависимость.

См. также

Смотреть что такое «Коэффициент корреляции» в других словарях:

Коэффициент корреляции — Математическое представление о степени связи между двумя сериями измерений. Коэффициент +1 обозначает четкую позитивную корреляцию: высокие показатели по одному параметру (например, рост) точно соотносятся с высокими показателями по другому… … Большая психологическая энциклопедия

КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ — англ. coefficient, correlation; нем. Korrelationskoeffizient. Мера тесноты связи двух или более переменных. Antinazi. Энциклопедия социологии, 2009 … Энциклопедия социологии

коэффициент корреляции — — [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN correlation coefficient … Справочник технического переводчика

Коэффициент корреляции — (Correlation coefficient) Коэффициент корреляции это статистический показатель зависимости двух случайных величин Определение коэффициента корреляции, виды коэффициентов корреляции, свойства коэффициента корреляции, вычисление и применение… … Энциклопедия инвестора

коэффициент корреляции — 1.33. коэффициент корреляции Отношение ковариации двух случайных величин к произведению их стандартных отклонений: Примечания 1. Эта величина всегда будет принимать значения от минус 1 до плюс 1, включая крайние значения. 2. Если две случайные… … Словарь-справочник терминов нормативно-технической документации

КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ — (correlation coefficient) мера ассоциации одной переменной с другой. См. Корреляция; Коэффициент корреляции производного значения Пирсона; Коэффициент ранговой корреляции спирмена … Большой толковый социологический словарь

Коэффициент корреляции — CORRELATION COEFFICIENT Показатель степени линейной зависимости между двумя переменными величинами: Коэффициент корреляции может изменяться в пределах от 1 до 1. Если большим значениям одной величины соответствуют большие значения другой (и… … Словарь-справочник по экономике

коэффициент корреляции — koreliacijos koeficientas statusas T sritis automatika atitikmenys: angl. correlation coefficient vok. Korrelationskoeffizient, m rus. коэффициент корреляции, m pranc. coefficient de corrélation, m … Automatikos terminų žodynas

коэффициент корреляции — koreliacijos koeficientas statusas T sritis fizika atitikmenys: angl. correlation coefficient vok. Korrelationskoeffizient, m rus. коэффициент корреляции, m pranc. coefficient de corrélation, m … Fizikos terminų žodynas

Источник

Что такое корреляция акций и облигаций?

Объясните, пожалуйста, простым языком, что такое корреляция ценных бумаг? Почему о ней говорят при составлении портфеля и что значит, когда она отрицательная?

Корреляция показывает, насколько активы схожи по поведению. Показатель описывает закономерности. Например, если при росте одного актива другой дешевеет и эта закономерность подтверждается историческими данными, говорят, что у активов обратная корреляция. Это относится как к отдельным ценным бумагам, так и к широким рынкам, классам активов и секторам экономики.

Коэффициент корреляции вычисляется на конкретном историческом отрезке. Он обозначается буквой r и принимает значения от −1 до +1. Если два актива движутся в связке, то коэффициент корреляции будет ближе к +1, а если в противоположных направлениях — ближе к −1. Но когда корреляция близка к нулю, взаимосвязи между ними нет. Это значит, что при росте или падении одного актива другой может вообще никак себя не проявлять. Например, корреляция акций и облигаций на рынке США в период с 1950 по 2012 год составила 0,11.

Расскажу, как можно использовать знание о корреляции при формировании портфеля.

Роль корреляции в управлении портфелем

Понимание корреляции между инструментами позволяет диверсифицировать портфель и снизить инвестиционные риски.

Например, если инвестор собрал портфель из 10 нефтегазовых компаний, он защитил себя только от специфических рисков, связанных с конкретным эмитентом. Волатильность портфеля по-прежнему будет высокой: если цены на нефть упадут, портфель также уйдет в красную зону из-за тесной корреляции акций.

Чтобы диверсификация работала, необходимо использовать инструменты с низкой или обратной корреляцией. Тогда движение цены одного актива будет компенсироваться движением другого. Так, государственные облигации — наиболее частный диверсификатор для акций, поскольку у этих активов исторически низкая взаимосвязь друг с другом.

Таким же образом устроен и механизм хеджирования, когда инвестор открывает позицию с отрицательной корреляцией к исходному активу, чтобы застраховаться от его падения. Например, так называемые обратные ETF обладают корреляцией, близкой к −1 по отношению к исходному активу.

Как победить выгорание

Как изменяется корреляция со временем

Современная теория портфеля позволяет найти идеальную смесь активов, при которой у портфеля будет оптимальное соотношение доходности и риска. Но главный недостаток этой теории в том, что корреляции со временем могут меняться. Два актива могут начать двигаться синхронно, даже если в прошлом их взаимосвязь была низкой. И заметить это можно только постфактум — на исторических данных.

Например, компания Blackstone провела исследование корреляции между разными классами активов за 20 лет. Результаты показали, что корреляция со временем только увеличивается. Это связано с разными факторами: тесной интеграцией экономик, глобальными производственными цепочками и усилившимся влиянием рынков друг на друга.

Seeking an Alternative — BlackstonePDF, 421 КБ

Если посмотреть на десятилетие перед кризисом 2008 года, то корреляция большинства инструментов по отношению к S&P 500 была ниже 0,5. Но после 2008 года она заметно выросла. Теперь только у высоконадежных облигаций по-прежнему слабая связь с акциями, хотя их корреляция сменилась с отрицательной на положительную: если раньше при падении S&P 500 они росли, то теперь тоже падают, пусть и не так сильно.

Корреляция различных классов активов с индексом S&P 500

1998—2007 2008—2020
Глобальные акции 0,84 0,89
Недвижимость 0,32 0,74
Высокодоходные облигации 0,49 0,73
Товары −0,01 0,59
Высоконадежные облигации −0,21 0,01

Корреляция и волатильность

Между корреляцией и волатильностью существует взаимосвязь: когда рынки становятся волатильными, корреляции между инструментами возрастают. Поэтому рост корреляции со временем можно объяснить тем, что за последние десятилетия рынки стали более волатильными. Например, с 2000 по 2009 год было 95 торговых сессий, когда S&P 500 сдвинулся на 3% и больше. А за предшествующие 50 лет был всего 81 случай.

Количество дней в каждом десятилетии, когда S&P 500 сдвинулся на 3% и более

1950—1959 5
1960—1969 9
1970—1979 16
1980—1989 24
1990—1999 27
2000—2009 95
2010—2019 50

Особенно явно корреляции усиливаются во время фондовых обвалов. В панике инвесторы массово скидывают ценные бумаги широкого спектра, и в итоге все падает независимо от корреляции.

Поэтому на спокойном рынке с 2014 по 2017 год положительно коррелировали между собой только высокорисковые активы: S&P 500, глобальные акции, бумаги развивающихся рынков и фонды REIT. А низкорисковые активы были связаны только между собой. Это, например, муниципальные, корпоративные облигации, долгосрочные трежерис. При этом корреляции между этими двумя группами активов практически не наблюдалось.

Но во время коронавирусного кризиса корреляции усилились. Все перечисленные выше активы стали взаимосвязаны. А облигации, которые традиционно считаются защитным инструментом, падали вместе с рисковыми активами.

Как посчитать корреляцию

Чтобы рассчитать корреляцию, можно воспользоваться онлайн-калькулятором, например от Portfolio Visualizer или более простым вариантом от Unicornbay.

Я использовал Portfolio Visualizer, чтобы проверить корреляции между такими классами активов:

Для этого я вбил через пробелы указанные тикеры, выбрал расчет корреляций на основе месячной доходности инструментов и рассчитал 36-месячную скользящую.

Корреляции рассчитывались в рамках окна шириной три года, которое двигалось по шкале времени с марта 2006 по февраль 2021 года. Скользящая корреляция за 36 месяцев позволяет увидеть, как менялись ее значения с течением времени.

Я начал расчет с марта 2006 года, так как для фонда DBC более ранних данных нет.

Результаты расчетов представлены в таблице. Мы видим, что исторически у недвижимости, коммодити и S&P 500 слабая отрицательная корреляция по отношению к долгосрочным и коротким облигациям.

36-месячная скользящая корреляция разных классов активов

Название Тикер TLT SHY SPY GLD DBC VNQ
iShares 20+ Year Treasury Bond ETF TLT 0,54 −0,32 0,23 −0,37 −0,01
iShares 1-3 Year Treasury Bond ETF SHY 0,54 −0,37 0,29 −0,21 −0,18
SPDR S&P 500 ETF Trust SPY −0,32 −0,37 0,05 0,54 0,72
SPDR Gold Shares GLD 0,23 0,29 0,05 0,36 0,09
Invesco DB Commodity Tracking DBC −0,37 −0,21 0,54 0,36 0,34
Vanguard Real Estate ETF VNQ −0,01 −0,18 0,72 0,09 0,34

Как рассчитать корреляцию в «Экселе»

Скользящие корреляции также достаточно легко рассчитать в «Экселе». В этом помогает функция КОРРЕЛ() — или CORREL() в англоязычной версии.

Для начала необходимо сформировать два массива данных с котировками интересующих инструментов. Для примера я возьму акции «Газпрома» (GAZP) и Сбербанка (SBER) и выгружу цены бумаг на конец каждого месяца с 1 марта 2015 по 1 марта 2021 года. Всего получилось 73 месяца.

После этого можно воспользоваться функцией КОРРЕЛ(), чтобы посчитать скользящие корреляции. Я приведу пример, как рассчитать скользящую трехмесячную, то есть значение за каждое предыдущее окно в три месяца.

Что в итоге

Корреляция показывает схожесть поведения активов. Понимание корреляций активов используется при диверсификации, а также оптимизации стратегии согласно современной теории портфеля.

Корреляция рассчитывается на конкретном временном отрезке, и она может меняться. Как показывают исторические данные, с течением времени корреляция растет.

Корреляция усиливается на падающих рынках и вместе с увеличением волатильности.

Что делать? Читатели спрашивают — эксперты Т⁠—⁠Ж отвечают

loader loaf aa7da19c722c45715bbefb58ac479ccb

MarketTwits, как-то неправильно приводить в пример корреляцию акции и индекса, состоящего на 1/6 из этих акций. Вот Русгидро и Сбер сравнить да, выбрать их индекса максимально отрицательно коррелирующие и составить свой идеальный индекс)

Здравствуйте! Есть ли смысл считать корреляцию ценных бумаг, если на длинной дистанции или в кризисные времена корреляция приобретает положительный характер? В чем тогда смысл этого показателя? Правильно ли я понимаю, что показатель имеет смысл только на коротких сроках владения бумагами?

Если корреляция сегодня одна, то завтра она будет другая, не приговор ли это всей этой системе? Чем эти гипотезы лучше тех. анализа?

Источник

Коэффициент корреляции: что нужно знать, формула, пример расчёта в Excel

koeffitsient korrelyatsii prostimi slovami

Приветствую всех читателей моего блога! Давненько я не писал статей по основам инвестирования. Сегодня хочу рассказать вам таком понятии как корреляция, которая имеет отношение к созданию качественного инвестиционного портфеля и диверсификации ваших вложений.

Если говорить о том, что такое корреляция простыми словами, то это по сути связь между двумя явлениями, выраженными в числовой форме. Например, проанализировав данные по ВВП на душу населения и продолжительности жизни в странах мира, мы невооруженным глазом заметим тенденцию:

А благодаря расчёту коэффициента корреляции мы можем узнать силу взаимосвязи в конкретном числовом выражении. Это очень удобно и полезно при анализе данных в самых разных областях науки, в том числе в экономике и инвестировании.

Сегодня я расскажу вам подробнее о том, что такое корреляция простыми словами, без сложных формул и терминов. Также я покажу вам, как правильно и легко рассчитать коэффициент корреляции в Excel и как правильно интерпретировать результаты, чтобы использовать их для составления инвестиционного портфеля.

А чтобы не пропускать следующие статьи блога, подписывайтесь на мой Телеграм-канал! Там же я выкладываю отчёты по инвестициям, сообщаю об обновлениях в моем инвест-портфеле и иногда пишу заметки на интересные темы. Даже чатик инвесторов у нас есть, присоединяйтесь 🙂

Ваши подписки помогают развивать блог и делать его более интересным как для читателей, так и для поисковых систем, так что заранее благодарен каждому подписчику 🙂

Спасибо за внимание, продолжаем!

Что такое корреляция простыми словами

Не хочу вас сразу грузить формулами и расчётами, об этом поговорим ближе к концу. Давайте сначала разберемся, что по своей сути означает цифра коэффициента корреляции, которую вы можете встретить в какой-нибудь книге или статье.

zhacheniya korrelyatsii

Если значение близко к единице или минус единице — значит два явления так или иначе сильно взаимосвязаны. Впрочем, причины этого не всегда очевидны — явление А может влиять на явление B, может быть наоборот. Нередко бывает, что существует явление C, которое приводит в движение А и В одновременно. В общем, природа корреляции — это уже второй вопрос, которым должны заниматься исследователи.

При высокой положительной корреляции вслед за графиком А растёт и график B, и чем выше значение, тем слаженнее оба движутся. Для наглядности, вот как выглядит корреляция +1:

polozhitelnaya korrelyatsiya

Движения графиков полностью повторяют друг друга, причем это как в случае простого добавления, так и с множителем.

otritsatelnaya korrelyatsiya

Движения графиков похожи на зеркальные отражения.

Коэффициент корреляции — удобный инструмент для анализа во многих сферах науки и жизни. Его легко рассчитать в Excel и применить, поэтому самая большая сложность в работе с ним — грамотно подобрать данные для расчёта. Основное правило — чем больше данных, тем лучше. Многие взаимосвязи проявляют себя лишь на длинной дистанции.

Также нужно следить за тем, чтобы найденные корреляции не были ложными.

Ложные корреляции

Дело в том, что с помощью коэффициента корреляции можно проверить на взаимосвязь любые явления, которые можно выразить в числовом выражении. То есть, реально любые — например количество свадеб в Нью-Йорке и объем импорта нефти в США из Норвегии:

Корреляция составила 86%! Действительно ли свадьбы влияют на экспорт нефти? Разумеется, нет — подобная зависимость совершенно случайна. Именно так выглядит ловушка ложной корреляции — она может показать взаимосвязь там, где её на самом деле нет.

Не хочу сильно заострять внимание на этой проблеме, так что если интересно поразбираться — нашел для вас видео, в котором найдете еще несколько примеров странных взаимосвязей и причины их появления:

В общем, на результаты корреляционного анализа есть смысл обращать внимание, когда связь между явлениями уже известна или подозревается. В противном случае это может быть всего лишь число, которое ничего не значит.

Корреляция и диверсификация

Как знания о корреляции активов могут помочь лучше вкладывать деньги? Думаю, вы все хорошо знакомы с золотым правилом инвестора — не клади все яйца в одну корзину. Речь, естественно, идёт о диверсификации инвестиционных активов в портфеле. Корреляция и диверсификация неразрывно связаны, что понятно даже из названия — английское diversify означает «разнообразить», а как коэффициент корреляции как раз показывает схожесть или различие двух явлений.

Другими словами, инвестировать в финансовые инструменты с высокой корреляцией не очень хорошо. Почему? Все просто — похожие активы плохо диверсифицируются. Вот пример портфеля двух активов с корреляцией +1:

diversifikatsiya polozhitelnaya korrelyatsiya

Как видите, график портфеля во всех деталях повторяет графики каждого из активов — рост и падение обоих активов синхронны. Диверсификация в теории должна снижать инвестиционные риски за счёт того, что убытки одного актива перекрываются за счёт прибыли другого, но здесь этого не происходит совершенно. Все показатели просто усредняются:

image 30

Портфель даёт небольшой выигрыш в снижении рисков — но только по сравнению с более доходным Активом 1. А так, никаких преимуществ по сути нет, нам лучше просто вложить все деньги в Актив 1 и не париться.

А вот пример портфеля двух активов с корреляцией близкой к 0:

diversifikatsiya nulevaya korrelyatsiya 2

Где-то графики следуют друг за другом, где-то в противоположных направлениях, какой-либо однозначной связи не наблюдается. И вот здесь диверсификация уже работает:

image 31

Мы видим заметное снижение СКО, а значит портфель будет менее волатильным и более стабильно расти. Также видим небольшое снижение максимальной просадки, особенно если сравнивать с Активом 1. Инвестиционные инструменты без корреляции достаточно часто встречаются и из них имеет смысл составлять портфель.

diversifikatsiya obratnaya korrelyatsiya

Уже знакомое вам «зеркало» позволяет довести показатели риска портфеля до минимальных:

image 28

Несмотря на то, что каждый из активов обладает определенным риском, портфель получился фактически безрисковым. Какая-то магия, не правда ли? Очень жаль, но на практике такого не бывает, иначе инвестирование было бы слишком лёгким занятием.

Коэффициент корреляции и ПАММ-счета

С расчётом корреляции я как студент экономического ВУЗа познакомился еще на втором курсе. Тем не менее, долгое время недооценивал важность расчёта корреляции именно для подбора ПАММ-портфеля. 2018 год очень четко показал, что ПАММ-счета с похожими стратегиями в случае кризиса могут вести себя очень похоже.

Случилось так, что с середины года отказала не просто одна стратегия управляющего, а большинство торговых систем, завязанных на активные движения валютной пары EUR/USD:

korrelyatsiya pamm schetov

Рынок был для каждого управляющего по-своему неблагоприятным, но присутствие их всех в портфеле привело к большой просадке. Совпадение? Не совсем, ведь это были ПАММ-счета с похожими элементами в торговых стратегиях. Без опыта торговли на рынке Форекс может быть сложно понять, как это работает, но по корреляционной таблице степень взаимосвязи видна и так:

image 34

Мы ранее рассматривали корреляцию вплоть до +1, но как видите на практике даже совпадение в районе 20-30% уже говорит о некоторой схожести ПАММ-счетов и, как следствие, результатов торговли.

Чтобы снизить шансы на повторение ситуации, как в 2018 году, я считаю в портфель стоит подбирать ПАММ-счета с низкой взаимной корреляцией. По сути, нам нужны уникальные стратегии с разными подходами и разными валютными парами для торговли. На практике, конечно, сложнее подобрать прибыльные счета с уникальными стратегиями, но если хорошо покопаться в рейтинге ПАММ-счетов, то все возможно. К тому же, низкая взаимная корреляция снижает требования для диверсификации, 5-6 счетов вполне хватит.

Пару слов о расчёте коэффициента корреляции для ПАММ-счетов. Достать сами данные относительно несложно, в Альпари прямо с сайта, для остальных площадок через сайт investflow.ru. Однако с ними нужно сделать небольшие преобразования.

Данные о прибыльности ПАММов изначально хранятся в формате накопленной доходности, нам это не подходит. Корреляция стандартных графиков доходности двух прибыльных ПАММ-счетов всегда будет очень высокой, просто потому что они все движутся в правый верхний угол:

image 35

У всех счетов положительная корреляция от 0.5 и выше за редким исключением, так мы ничего не поймем. Реальное сходство стратегий ПАММ-счетов можно увидеть только по дневным доходностям. Рассчитать их не особо сложно, если знаете нужные формулы доходности. Если прибыль или убыток двух ПАММ-счетов совпадают по дням и по процентам, высока вероятность что их стратегии имеют общие элементы — и коэффициент корреляции нам это покажет:

image 37

Как видите, некоторые корреляции стали нулевыми, а некоторые остались на высоком уровне. Мы теперь видим, какие ПАММ-счета действительно похожи между собой, а какие не имеют ничего общего.

Напоследок давайте разберёмся, что делать и как посчитать корреляцию, если у вас появилась в этом необходимость.

Коэффициент корреляции в Excel и формула расчёта

Вероятно, вас интересует, как самостоятельно рассчитать корреляцию двух инвестиционных активов. До изобретения компьютеров приходилось делать это вручную, для чего использовалась вот такая формула коэффициента корреляции:

image 38

Кстати, студентам на экзамене до сих пор компьютеров не выдают, хоть калькулятор можно и на том спасибо. Как вы понимаете, занятие все равно трудоёмкое 🙂

Профессиональному инвестору может понадобиться рассчитать сотни корреляций, так что вариант по формуле не подходит. Естественно, эта задача уже давно автоматизирована, и, как по мне, проще всего рассчитать коэффициент корреляции в Excel.

Чтобы далеко за примером не ходить, давайте рассчитаем корреляцию двух популярных ПАММ-счетов Lucky Pound и Hohla EUR. Они находятся на площадке компании Alpari, а значит мы можем скачать историю доходности прямо с сайта:

lucky hohla korrelyatsiya

Далее нам надо скопировать историю доходности в один файл, для удобства. Для точного расчета корреляции в Excel нам в принципе хватит и двух лет истории, располагаем данные так:

image 39

Теперь, как я уже писал выше, для ПАММ-счетов (и для многих других инвестиционных инструментов) надо рассчитать дневные доходности:

image 40

А дальше все просто — используется встроенная формула коэффицента корреляции в Excel =КОРРЕЛ():

image 41

Получили значение 0.12, а значит стратегии ПАММ-счетов практически не имеют ничего общего. Это хорошо для диверсификации, так что можно добавлять обоих в инвестиционный портфель.

При желании, можно сделать табличку на весь ваш портфель. Тогда если у вас появится новый вариант для инвестирования, вы сможете сразу сравнить его с каждым активом и увидеть, есть ли нежелательные корреляции.

Мне понравилось работать над этой темой и статья получилась неплохой. Если вы согласны с этим, сделайте доброе дело и поделитесь ссылочкой с друзьями и коллегами 🙂

Ну а я пошел делать следующую статью. Есть еще одна интересная тема по основам инвестирования, которую я хочу подробно обсудить… Будет обидно, если пропустите, так что подписывайтесь на обновления блога по почте или через соцсети.

Источник

Комфорт
Adblock
detector