Что такое коэффициент коррекции времени впрыска

para art dozhd 133044 1280x720 Вес тела

Типовые параметры работы инжекторных двигателей ВАЗ.

e6bfa8s 100

Вот нашел полезную информацию по типовым параметрам. Сделана по сути как заметка для себя.

Для многих начинающих диагностов и простых автолюбителей, которым интересна тема диагностики будет полезна информация о типичных параметрах двигателей. Поскольку наиболее распространенные и простые в ремонте двигатели автомобилей ВАЗ, то и начнем именно с них. На что в первую очередь надо обратить внимание при анализе параметров работы двигателя?
1. Двигатель остановлен.
1.1 Датчики температуры охлаждающей жидкости и воздуха (если есть). Проверяется температура на предмет соответствия показаний реальной температуре двигателя и воздуха. Проверку лучше производить с помощью бесконтактного термометра. К слову сказать, одни из самых надежных в системе впрыска двигателей ВАЗ – это датчики температуры.

1.2 Положение дроссельной заслонки (кроме систем с электронной педалью газа). Педаль газа отпущена – 0%, акселератор нажали – соответственно открытию дроссельной заслонки. Поиграли педалью газа, отпустили – должно также остаться 0%, ацп при этом с дпдз около 0,5В. Если угол открытия прыгает с 0 до 1-2%, то как правило это признак изношенного дпдз. Реже встречается неисправности в проводке датчика. При полностью нажатой педали газа некоторые блоки покажут 100% открытия (такие как январь 5.1, январь 7.2), а другие как например Bosch MP 7.0 покажут только 75%. Это нормально.

1.3 Канал АЦП ДМРВ в режиме покоя: 0.996/1.016 В — нормально, до 1.035 В еще приемлемо, все что выше уже повод задуматься о замене датчика массового расхода воздуха. Системы впрыска, оснащенные обратной связью по датчику кислорода способны скорректировать до некоторой степени неверные показания ДМРВ, но всему есть предел, поэтому не стоит тянуть с заменой этого датчика, если он уже изношен.

2. Двигатель работает на холостом ходу.

2.1 Обороты холостого хода. Обычно это – 800 – 850 об/мин при полностью прогретом двигателе. Значение количества оборотов на холостом ходу зависят от температуры двигателя и задаются в программе управления двигателем.

2.2 Массовый расход воздуха. Для 8ми клапанных двигателей типичное значение составляет 8-10 кг/ч, для 16ти клапанных – 7 – 9,5 кг/час при полностью прогретом двигателе на холостом ходу. Для ЭБУ М73 эти значения несколько больше в связи с конструктивной особенностью.

2.3 Длительность времени впрыска. Для фазированного впрыска типичное значение составляет 3,3 – 4,1 мсек. Для одновременного – 2,1 – 2,4 мсек. Собственно не так важно само время впрыска, как его коррекция.

2.4 Коэффициент коррекции времени впрыска. Зависит от множества факторов. Это тема для отдельной статьи, здесь только стоит упомянуть, что чем ближе к 1,000 тем лучше. Больше 1,000 – значит смесь дополнительно обогащается, меньше 1,000 значит обедняется.

2.5 Мультипликативная и аддитивная составляющая коррекции самообучением. Типичное значение мультипликатива 1 +/-0,2. Аддитив измеряется в процентах и должен быть на исправной системе не более +/- 5%.

2.6 При наличии признака работы двигателя в зоне регулировки по сигналу датчика кислорода последний должен рисовать красивую синусоиду от 0,1 до 0,8 В.

Теперь рассмотрим подробнее, как на практике ведут себя эти параметры. Поскольку для диагностики я пользуюсь программой SMS Diagnostics (Алексею Михеенкову и Сергею Сапелину привет!), то все скриншоты будут оттуда. Параметры сняты с практически исправных автомобилей, за исключением отдельно оговоренных случаев.

Ваз 2110 8ми клапанный двигатель, блок управления Январь 5.1
Здесь немного подправлен коэффициент коррекции СО в связи с небольшим износом ДМРВ.

41baf24s 960

Ваз 2107, блок управления Январь 5.1.3

Источник

Диагностика. Параметры коррекции состава воздушно-топливной смеси (фрагмент статьи).

aQAAAgNYheA 100

В своё время сохранил себе умную статейку с умного сайта.
September 2007
V.P.Leshchenko
Images and Photos by Author
Использованы материалы Toyota Technical Training Course 852, Course 874, Course 982

Расчет базовой длительности количества топлива

2e7c41as 960

Общеизвестно, что основное назначение БУ двигателем современного автомобиля это не только точное
управление составом смеси (временем открытого состояния форсунок) в соответствии с нагрузкой на двигатель и с учетом его состояния, но минимизация ущерба окружающей среде и здоровью людей. Поэтому основные «счетные» ресурсы процессора БУ направлены на решение этих задач. Расчет количества необходимого топлива происходит в несколько этапов.
• Формирование «базового времени впрыска»
• Коррекция времени впрыска по условиям эксплуатации
• Коррекция по напряжению бортовой сети
В начале БУ определяет параметры «базового» количества необходимого топлива и значение угла опережения зажигания на основании данных о частоте вращения коленчатого вала и нагрузке на двигатель. Эти значения считывается из соответствующих таблиц, запрограммированных заводом-изготовителем, и корректируется с использованием поправочного коэффициента, называемого «топливным балансом» (Fuel Trim). После этого производится коррекция состава смеси, которая обычно учитывает текущие (нынешние) параметры системы, то есть состояние двигателя и его систем в настоящее время. К таковым относятся следующие:
• температура охлаждающей жидкости
• температура воздуха во впускном коллекторе
• положение дроссельной заслонки
• состав отработавших газов
• давление в топливной системе
• атмосферное давление (высота над уровнем моря)
• нагрузка на двигатель (Calc Load) определяется по количеству воздуха, поступающего вцилиндры, определяется датчиком расхода/потока воздуха. Возможно использование различных типов: Vane Air Flow meter, Karman Vortex Air Flow meter, Mass Air Flow meter1 или датчиком разрежения (абсолютного давления) во впускном коллекторе (Manifold Absolute Pressure Sensor)
• частота вращения двигателя определяется датчиком положения коленчатого вала
• скорость автомобиля — датчиком скорости
• температура двигателя определяется датчиком температуры охлаждающей жидкости
• положение дроссельной заслонки определяется o датчиком положения дроссельной заслонки o датчиком холостого хода
• температура воздуха определяется датчиком температуры воздуха
• состав отработавших газов может определяться с помощью следующих датчиков:
кислородные датчики (Oxygen Sensor)
датчики обедненной смеси (Sensor Lean Mixture)
датчики состава топливно-воздушной смеси (Air/Fuel Ratio Sensor)
датчик содержания NOx2
• высота над уровнем моря — датчиком давления
• давление в топливной системе – соответствующим датчиком в насосе высокого давления или в топливной магистрали.
Топливный баланс и обратная связь по составу отработавших газов
Величина коррекции количества топлива, подаваемого в цилиндры по напряжению датчика содержания кислорода, зависит от различных факторов. Цель этой коррекции заключается в обеспечении стехиометрического состава смеси. Если степень необходимого вмешательства невелика, например, менее 10%, то БУ справляется с этим сравнительно легко. При необходимости изменения базового значения более чем на 20 %, т.е. для осуществления более существенного изменения, компьютер проводит процедуру «переобучения» (адаптации). Уменьшая или увеличивая базовое время впрыска топлива в пределах допустимого, он проверяет реакцию системы и устанавливает (записывает в память) новое значение этого параметра. При этом для точного поддержания стехиометрического состава топливно-воздушной смеси (14.7:1) по-прежнему используется напряжение датчиков содержания кислорода. В зависимости от различных факторов, в том числе, от высоты над уровнем моря, износа поршневой группы и форсунок, допусков на качество топлива и на изменения в состоянии двигателя, коррекция, определяемая обратной связью по составу отработавших газов, изменяется. В режиме замкнутой обратной связи по напряжению кислородных датчиков происходит изменение состава смеси посредством небольших изменений (приращений). Поэтому, если необходима относительно небольшая коррекция (до 3 %), то ECM сравнительно просто изменяет состав смеси. Обычно диапазон возможного изменения состава смеси составляют ± 20 % от его базового значения.

cf7c41as 960

8241as 960

Пример #1. Представлены параметры исправной топливной системы. Базовая длительность при
указанной нагрузке и частоте вращения коленчатого вала составляет 3.0 мсек. SFT изменяется в диапазоне
±10%, выходное напряжение датчика кислорода переключается нормально. Система исправна и не требует вмешательства.
Пример #2. Представлены параметры при возникновении негерметичности впускного коллектора
(«подсос» воздуха). Так как нагрузка на двигатель не изменилась, то базовая длительность по-прежнему составляет 3.0 мсек.
• Дополнительный воздух обедняет смесь, поэтому уменьшается выходное напряжение
кислородного датчика.
• SFT безуспешно пытается исправить это положение, но достигает предела +20%.
• ЕСМ «узнает», что необходимо осуществить коррекцию в сторону увеличения базовой продолжительности впрыска топлива (LFT) для того, чтобы выходное напряжение датчика кислорода находилось в допустимом рабочем диапазоне.
Пример #3. Показан результат того, что ЕСМ изменил LFT на +10 %. Хотя нагрузка и частота не изменились, базовое время впрыска топлива теперь составляет 3.3 мсек.
• В этом состоянии система впрыска поставляет достаточно топлива, чтобы восстановить почти нормальное переключение напряжения датчика кислорода. Переключения происходят, но диапазон напряжения кислородного датчика смещен в зону обедненного состава смеси. Для устранения этого состояния требуется все еще чрезмерная коррекция (SFT = +15 %).
• ЕСМ проводит долговременную коррекцию базовой длительности впрыска (LFT) для того, чтобы параметр SFT снова был в диапазоне ±10%.
Пример #4. Описывает результат дальнейшего изменения LFT. Нагрузка и частота вращения коленчатого вала остались без изменения (как и в примере #1), но базовая продолжительность впрыска топлива увеличилась на 20 % и теперь стала равной 3.6 мсек.
• Базовая длительность подачи снова в пределах ±10% от заданного времени впрыска.
• Нормальные переключения датчика кислорода сопровождаются изменениями SFT ±10% от базовой продолжительности подачи топлива.
Таким образом, в результате адаптации системы впрыска к реальному состоянию системы, состав смеси становится оптимальным. В том случае, когда ЕСМ не в состоянии обеспечить необходимый состав топливно-воздушной смеси, в его память записываются коды неисправности:
P0171 System too Lean (Bank1)
P0172 System too Rich (Bank1)
P0174 System too Lean (Bank2)
P0175 System to Rich (Bank2)
Достаточно интересно влияние некоторых «непрямых» воздействий на базовую длительность впрыска. Например, отмечено уменьшение значения этого параметра после промывки форсунок. Не менее интересна реакция системы впрыска на регулировку опережения зажигания. После установки правильного начального угла опережения зажигания наблюдается уменьшение времени впрыска на холостом ходу прогретого двигателя.

Источник

Топливная коррекция

Что такое топливная коррекция? Несмотря на существование понятия топливной коррекции задолго до появления инжекторных автомобилей, интерес к ее изучению автомобилистами возрос с ужесточением экологических требований к продуктам выхлопа двигателя внутреннего сгорания.

Понятие топливной коррекции

Способность системы двигателя поддерживать на разных режимах стехиометрический состав смеси путем регулирования подачи топлива – это и есть топливная коррекция.

Режимы работы двигателя обеспечиваются процессом смесеобразования паров бензина и воздуха при определенном соотношении их масс.

Наиболее важным показателем нормальной работы двигателя, при котором в цилиндрах его происходит химическая реакция, сопровождающаяся горением, является его стехиометрический состав смеси. Стехиометрический состав должен поддерживаться соотношением 14,7 частей воздуха и одной частью бензина. Именно при этом соотношении обеспечивается процесс горения топливной смеси. Соотношение 14,7:1 должно поддерживаться при различных условиях работы двигателя: запуск, холостой ход, движение в смешанном цикле (город-трасса).

Функция поддержки топливной смеси работает на карбюраторном двигателе в автоматическом режиме путем дозирования топлива сложным механизмом каналов и калиброванных жиклеров. Подготовка горючей смеси начинается в карбюраторе и заканчивается в цилиндре. Процесс подготовки смеси происходит непрерывно и также непрерывно изменяется соотношение масс воздуха и топлива. В зависимости от режима работы двигателя соотношение масс принимает различные значения, при которых смесь может быть богатой, обогащенной, нормальной, обедненной и бедной.

В бензиновом двигателе изменение режима работы двигателя производится путем подачи воздуха во впускной коллектор (на карбюраторном – первичную и вторичную камеру) и поэтому за основу расчета соотношения смеси принят коэффициент избытка воздуха α (альфа). Коэффициент α – это отношение действительного количества воздуха MR, находящегося в смеси, к количеству воздуха MT, теоретически необходимому для сжигания данного топлива:

Приведем пример, если количество воздуха в горючей смеси равно теоретически необходимому для полного сгорания топлива, т.е. 14,7 кг воздуха на 1 кг бензина, то α = 1 и смесь называется нормальной. Двигатель работает стабильно и экономно при сохранении умеренной мощности.

Вобогащеннойсмеси α=0,8-0,85 и на 1 кг бензина будет затрачиваться 11,76 кг воздуха, это на 15…20% меньше, чем в нормальной смеси. Скорость сгорания обогащенной смеси выше нормальной, но двигатель развивает наибольшую мощность при незначительном увеличении расхода топлива.

В богатойсмеси α=0,4-0,79 содержание воздуха на 20…60% меньше, чем в нормальной, или на 1 кг бензина количество воздуха находится в пределах от 5,88 кг до 11,75 кг. Скорость горения богатой смеси замедленная, при этом заметно ухудшается тяговая характеристика двигателя и значительно повышается путевой расход топлива.

В обедненнойсмеси с α=1,1-1,2 воздуха на 10…20% больше, чем в нормальной, т.е. количество воздуха составляет 16,17 — 17,64 кг. Обедненная смесь характеризуется низкой скоростью горения смеси с незначительной потерей мощности, при этом экономно расходуется топливо.

В бедной смеси α=1,21 — 1,30 воздуха содержится 20…30% больше, чем в нормальной. Горение бедной смеси замедленное и может сопровождаться сильными хлопками в впускной коллектор или глушитель. Двигатель работает неустойчиво, а путевой расход топлива повышается.

Топливная коррекция на инжекторном автомобиле

Блок управления во время работы двигателя, получая сигналы от датчиков, контролирует и регулирует правильное соотношение воздух — топливо путем точной настройки количества топлива. На современных автомобилях высокоточный контроль производится благодаря установленным кислородным датчикам, функционирующим по замкнутому контуру с датчиком массового расхода воздуха или датчиком абсолютного давления. Кислородные датчики можно сравнить с «глазами» блока управления. Именно эти датчики видят состояние выхлопа и мгновенно сообщают блоку о состоянии смеси.

Как это работает? Поступила информация от датчика кислорода о обедненной смеси выхлопных газов. Блок управления производит расчет и увеличивает подачу топлива повышая время длительности открытия форсунок. И наоборот, если датчик кислорода сообщил блоку об обогащении выхлопа, то мгновенно время открытия форсунки сокращается.

Таким образом, именно кислородные датчики определяют показания коррекции топлива.

Процесс добавления или сокращения топлива называется топливной коррекцией (Fuel Trim). В практической деятельности специалисты, при проверке двигателя называют топливную коррекцию текущим коэффициентом самообучения, который в то же время зависит от его составляющих: долгосрочной коррекции и краткосрочной. Указанные составляющие на разных автомобилях или при использовании мульти марочных сканеров разных производителей имеют свои определенные названия (обозначения).

Долгосрочная коррекция Краткосрочная коррекция
длительная коррекция короткая коррекция
аддитивная мультипликативная
Long Term Fuel Trim (LTFT) Short Term Fuel Trim (STFT)
обучение режима смешивания интервал режима смешивания

И это не полный перечень названий (обозначений) составляющих текущего коэффициента топливной коррекции в окне параметров сканера.

У производителей автомобилей и разработчиков диагностического оборудования различных марок отсутствует договоренность о единых обозначениях параметров – каждый назначает собственные сокращения.

Обозначим аддитивную составляющую коррекции самообучения Кад, а мультипликативную Кмульт. Аддитивная коррекция Кад отвечает за работу двигателя при минимальных оборотах холостого хода, мультипликативная Кмульт – при частичных нагрузках.

Рассмотрим более подробно функциональное значение этих составляющих.

Аддитивная топливная коррекция

Термин «аддитивный» произошел от латинского additio — прибавляю, относящийся к сложению. Соответственно, аддитивная топливная коррекция (или иначе как долгосрочная) рассчитывается на основе показаний мультипликативной коррекции (краткосрочной).

Аддитивная составляющая работает только на холостом ходу и единицей ее измерения являются миллисекунды.

Функционально долговременная коррекция выполняет действия для получения сигнала от датчика кислорода.

Мультипликативная коррекция

Кмульт – показатель безразмерный. Предел его изменений лежит в диапазоне от 0,75 до 1,25. Выход за границы предельных значений любого коэффициента самообучения свидетельствует о значительном отклонении состава смеси от стехиометрии.

Если Кмульт станет меньше 0,78 или больше 1,22, система встроенной в блок самодиагностики включит желтую предупреждающую контрольную лампу «проверь двигатель». Аналогично включится лампа, если долговременная коррекция превысит 9-ти процентную границу, т.е. достигла критического значения, при этом, как в положительную, так и отрицательную сторону. Проверкой сканером маски DTC выявляются коды неисправностей РО171 (смесь бедная) или РО172 – смесь богатая.

Краткосрочная коррекция (STFT) относится к немедленным изменениям подачи топлива, происходящим несколько раз в секунду.

При диагностике необходимо обратить внимание на строку параметров сканера «ДК1-Банк 1», где отслеживается работа кислородного датчика. Когда сигнал датчика уходит в плюс, блок управления мгновенно меняет значение кратковременной коррекции в сторону минуса, прикрывая распыл форсунки. Значение слова «Банк 1» встречается практически на всех мультимарочных сканерах и означает оно контроль топливной смеси в одном блоке цилиндров. На V-образных двигателях, например, работает также строка «ДК1-Банк 2».

Причина отклонения показаний кислородного датчика в сторону плюса может быть не герметичность форсунок, а в сторону минуса (сваливание сигнала в бедную смесь) – подсос воздуха во впускной коллектор.

Коэффициент коррекции времени впрыска и его составляющие

Текущий коэффициент коррекции Ктек реагирует на постоянно происходящие колебания состава смеси, но функция его на этом и заканчивается. В то время, когда выпускался инжекторный автомобиль ВАЗ-2114 с установленным блоком Январь-5.1 время впрыска корректировалось только на основании текущего коэффициента коррекции. Установленные блоки Январь-7.2 и Bocsh M7.9.7 на ВАЗ-2114 стали учитывать аддитивным и мультипликативным коэффициентами влияние долговременных, медленно меняющихся факторов, возникающих в процессе работы двигателя (снижение компрессии, давления топлива, производительности работы бензонасоса, увод параметров ДМРВ и т.д.).
Как влияют и приводят в соответствие текущий коэффициент коррекции Ктек его составляющие коэффициенты самообучения (кратковременная и долговременная) приведем на примере.

На автомобиле Лачетти двигатель холодный и отсутствует лямбда регулирование, т.е. режим адаптации топливной смеси не включился. При этом, текущий коэффициент коррекции Ктек = 1. Условия включения режима адаптации: двигатель должен прогреться до рабочей температуры, активизировались кислородные датчики. Если соблюдены условия и двигатель не имеет серьезных повреждений газораспределительного механизма и поршневой группы, а также исправен датчик абсолютного давления, то коэффициент Ктек будет принимать значения на холостом ходу в пределах 0,98–1,02.
Если двигатель перевести в режим частичной нагрузки, то влияние аддитивного коэффициента, работающего только на холостом ходу принимать в расчетах не имеет смысла. Функционировать начинает мультипликативный коэффициент.

Задача всех коэффициентов заключается в управлении временем впрыска форсунок. И основной тон в этом задает управляющий кислородный датчик.

Предположим, что кривая сигнала кислородного датчика увеличивается, сообщая блоку управления об уменьшении кислорода в смеси. Блок управления мгновенно реагирует на отсутствие кислорода и короткую коррекцию уменьшает, укорачивая тем самым время открытого состояния форсунок. Реакция кислородного датчика на уменьшение топливоподачи отражается падающей кривой в сторону бедной смеси. Блок управления получив сигнал от кислородного датчика тут же увеличивает короткую коррекцию и время впрыска соответственно растет.
Аддитивная составляющая коррекции самообучения Кад также контролирует изменения коэффициента Ктек, но только в режиме холостого хода. Размерность аддитивной коррекции – проценты или миллисекунды.

В упрощенном виде изменение состава смеси, определяемое коэффициентом Кад, рассчитывается по формуле: Кад*100/нагрузка. На исправном двигателе в режиме холостого хода нагрузка находится в пределах 18-20%. Предположим, что Кад принял значение, равное 3%. Просчитав по упрощенной формуле ориентировочный состав смеси, получаем 15-ти процентное обогащение. Аналогично и с минусовым значением адаптации. Если Кад=-3%, то получаем 15-ти процентное обеднение смеси.

Коэффициент коррекции co

На ранних версиях систем управления двигателем инжекторных автомобилей отсутствовали кислородные датчики и, соответственно, автоматическая поддержка топливной смеси не работала. Выравнивать смесь в нормальную возможно было только потенциометром СО, изменяя в сторону обогащения или обеднения.

Принцип регулирования смеси потенциометром основывался на показаниях газоанализатора, примерно так же, как и на карбюраторных двигателях. Установленные нормативы компонентов выброса в выхлопных газах приведены в инструкциях к газоанализатору. И если при регулировке показания СО на газоанализаторе установились на 0,8%, то это означает, что топливная смесь отрегулирована правильно и соответствует норме. С усовершенствованием аппаратной части блока управления, регулирование коэффициента коррекции со стало возможным непосредственно со сканера и потенциометр уже не устанавливался.

Коэффициент динамической коррекции УОЗ

Динамические характеристики автомобиля зависят не только от состояния топливной смеси, поступающей в цилиндры. В переходных режимах, например, от холостого хода к ускорению, большое значение имеет настройка коэффициента динамической коррекции угла опережения зажигания. При этом топливная смесь, подаваемая в цилиндры и динамическая коррекция УОЗ тесно связаны между собой.

koeffisient dinamicheskoi korreksii

По графику зависимости УОЗ от оборотов двигателя наблюдается отскок угла в данном программном обеспечении, которое достигает 10 градусов от оптимального УОЗ в некоторых режимных точках. Чем больше коррекция угла, тем сильнее проявляются запаздывания и провалы при ускорении. Незначительно изменив состав смеси в сторону обогащения и уменьшив коррекцию угла, можно существенно улучшить поведение автомобиля во всем диапазоне нагрузок.

Источник

Что такое коэффициент коррекции времени впрыска

printer

Существует коэффициент коррекции впрыска топлива, который приспосабливает стандартную длительность впрыска топлива согласно незначительным различиям между двигателями, которые имеют место при допустимых производственных отклонений, износа, а также незначительных нарушений образования смеси, таких как утечка вакуума («подсос» воздуха).

Этот коэффициент позволяет изменять расчетную длительность впрыска, т.е. время открывания форсунок (до коррекции по напряжению ЛЗ) самое большее на 20%, чтобы не допускать ситуации, когда коррекция по кислородному датчику становится чрезмерной.

У меня, после считывания параметров программой OpenDiag Mobile обнаружилось, что коэффициент коррекции впрыска измеряется в шагах, а не в мс.
Всё перерыл, так и не нашел объяснения этим шагам. dash1

Имеется три параметра коррекции:

1. Коррекция длины впрыска по сигналу с ДК (шаг)
При включенном зажигании (0 об.) равен 128.
На холостом ходу колеблется возле 128.

В типовых параметрах никаких шагов нет.
Кто-нибудь знает как эти шаги соотнести с длительностью впрыска? pardon

Корр.png
Описание: ELM-327, программа OpenDiag Mobile, 2110, Bosch MP7.0.H, M7V03E65
Размер файла: 24,29 KB
Просмотрено: 414 раз(а)
t 117042 1488629195.png 593

eco Шаги эти, их должна диагностическая программа перевести в общепринятые цифры проценты. Разработчик диаг проги забил на этот эбу, не сделал перевод в стандартное отображение.

Пробуй другие программы.

Поддержу d.dmitry, походу косяк в диагностической проге. pardon
В декабре 2016-го как раз МР7.0 мацал двумя прогами, МТ1.2.0.9 и от Мотор-Мастер Тульского DISco. всё вменяемо было.

Коррекция длины впрыска по сигналу с ДК (шаг)

Разработчик диаг проги забил на этот эбу, не сделал перевод в стандартное отображение.

Добавлено спустя 39 минут 33 секунды:

Длины? Может длительности?

Может цифири «128» надо понимать как «1,28» в мс? А «252» как «2,52» в процентах?

Корр2.png
Описание: Из программы OpenDiagFree
Размер файла: 38,2 KB
Просмотрено: 397 раз(а)
t 2 729
График корр дл вспрыска по сигналу с ДК.png
Описание: Просмоторщик лога DiagView
Размер файла: 37,04 KB
Просмотрено: 340 раз(а)
t ae ae 189
Вкл зажигания обороты ноль.png
Описание: До включения двигателя
Размер файла: 24,05 KB
Просмотрено: 300 раз(а)
t ue 136

прогой торкуе не пробовал смотреть? может она адекватней

подключил торк та же шляпа коефф корр в шагах (

Источник

Комфорт
Adblock
detector