Что показывает коэффициент фишера

otkrytka novyj god rozhdestvo 133718 1280x720 Вес тела
Содержание
  1. Библиотека постов MEDSTATISTIC об анализе медицинских данных
  2. Ещё больше полезной информации в нашем блоге в Инстаграм @medstatistic
  3. Критерии и методы
  4. ТОЧНЫЙ КРИТЕРИЙ ФИШЕРА
  5. 1. История разработки критерия
  6. 2. Для чего используется точный критерий Фишера?
  7. 3. В каких случаях можно использовать точный критерий Фишера?
  8. 4. Как рассчитать точный критерий Фишера?
  9. 5. Как интерпретировать значение точного критерия Фишера?
  10. 6.1 Параметрические критерии
  11. 6.1.1 Методы проверки выборки на нормальность
  12. 6.1.2 Критерий Стьюдента ( t-критерий)
  13. 6.1.3 F — критерий Фишера
  14. 6.2 Непараметрические критерии
  15. 6.2.1 Критерий знаков ( G-критерий)
  16. Что показывает коэффициент фишера
  17. Критерий Фишера и критерий Стьюдента в эконометрике
  18. Таблицы по нахождению критерия Фишера и Стьюдента
  19. Критерии Стьюдента
  20. Видео лекциий по расчету критериев Фишера и Стьюдента
  21. Определение доверительных интервалов

Библиотека постов MEDSTATISTIC об анализе медицинских данных

Ещё больше полезной информации в нашем блоге в Инстаграм @medstatistic

Критерии и методы

ТОЧНЫЙ КРИТЕРИЙ ФИШЕРА

– это критерий, который используется для сравнения двух и более относительных показателей, характеризующих частоту определенного признака, имеющего два значения. Исходные данные для расчета точного критерия Фишера обычно группируются в виде четырехпольной таблицы, но могут быть представлены и многопольной таблицей.

1. История разработки критерия

Впервые критерий был предложен Рональдом Фишером в его книге «Проектирование экспериментов». Это произошло в 1935 году. Сам Фишер утверждал, что на эту мысль его натолкнула Муриэль Бристоль. В начале 1920-х годов Рональд, Муриэль и Уильям Роуч находились в Англии на опытной сельскохозяйственной станции. Муриэль утверждала, что может определить, в какой последовательности наливали в ее чашку чай и молоко. На тот момент проверить правильность ее высказывания не представлялось возможным.

Это дало толчок идее Фишера о «нуль гипотезе». Целью стала не попытка доказать, что Муриэль может определить разницу между по-разному приготовленными чашками чая. Решено было опровергнуть гипотезу, что выбор женщина делает наугад. Было определено, что нуль-гипотезу нельзя ни доказать, ни обосновать. Зато ее можно опровергнуть во время экспериментов.

Было приготовлено 8 чашек. В первые четыре налито молоко сначала, в другие четыре – чай. Чашки были помешаны. Бристоль предложили опробовать чай на вкус и разделить чашки по методу приготовления чая. В результате должно было получиться две группы. История говорит, что эксперимент прошел удачно.

Благодаря тесту Фишера вероятность того, что Бристоль действует интуитивно, была уменьшена до 0.01428. То есть, верно определить чашку можно было в одном случае из 70. Но все же нет возможности свести к нулю шансы того, что мадам определяет случайно. Даже если увеличивать число чашек.

Эта история дала толчок развитию «нуль гипотезы». Тогда же был предложен точный критерий Фишера, суть которого в переборе всех возможных комбинаций зависимой и независимой переменных.

2. Для чего используется точный критерий Фишера?

Точный критерий Фишера в основном применяется для сравнения малых выборок. Этому есть две весомые причины. Во-первых, вычисления критерия довольно громоздки и могут занимать много времени или требовать мощных вычислительных ресурсов. Во-вторых, критерий довольно точен (что нашло отражение даже в его названии), что позволяет его использовать в исследованиях с небольшим числом наблюдений.

Особое место отводится точному критерию Фишера в медицине. Это важный метод обработки медицинских данных, нашедший свое применение во многих научных исследованиях. Благодаря ему можно исследовать взаимосвязь определенных фактора и исхода, сравнивать частоту патологических состояний между разными группами пациентов и т.д.

3. В каких случаях можно использовать точный критерий Фишера?

Аналогом точного критерия Фишера является Критерий хи-квадрат Пирсона, при этом точный критерий Фишера обладает более высокой мощностью, особенно при сравнении малых выборок, в связи с чем в этом случае обладает преимуществом.

4. Как рассчитать точный критерий Фишера?

Вначале составляем четырехпольную таблицу сопряженности:

Исход есть (Наличие ВПР) Исхода нет (Отсутствие ВПР) Всего
Фактор риска есть (Курящие) A = 10 B = 70 (A + B) = 80
Фактор риска отсутствует (Некурящие) C = 2 D = 88 (C + D) = 90
Всего (A + C) = 12 (B + D) = 158 (A + B + C + D) = 170

Точный критерий Фишера рассчитывается по следующей формуле:

В результате вычислений находим, что P = 0,0137.

5. Как интерпретировать значение точного критерия Фишера?

Достоинством метода является соответствие полученного критерия точному значению уровня значимости p. То есть, полученное в нашем примере значение 0,0137 и есть уровень значимости различий сравниваемых групп по частоте развития ВПР плода. Необходимо лишь сопоставить данное число с критическим уровнем значимости, обычно принимаемым в медицинских исследованиях за 0,05.

Источник

6.1 Параметрические критерии

В группу параметрических критериев методов математической статистики входят методы для вычисления описательных статистик, построения графиков на нормальность распределения, проверка гипотез о при­надлежности двух выборок одной совокупности. Эти методы основыва­ются на предположении о том, что распределение выборок подчиняется нормальному (гауссовому) закону распределения. Среди параметрических критериев статистики нами будут рассмотрены критерий Стьюдента и Фишера.

6.1.1 Методы проверки выборки на нормальность

Чтобы определить, имеем ли мы дело с нормальным распределением, можно применять следующие методы:

1) в пределах осей можно нарисовать полигон частоты (эмпирическую функцию распределения) и кривую нормального распределения на основе данных исследования. Исследуя формы кривой нормального распределения и графика эмпирической функции распределения, можно выяснить те параметры, которыми последняя кривая отличается от первой;

2) вычисляется среднее, медиана и мода и на основе этого определяется отклонение от нормального распределения. Если мода, медиана и среднее арифметическое друг от друга значительно не отличаются, мы имеем дело с нормальным распределением. Если медиана значительно отличается от среднего, то мы имеем дело с асимметричной выборкой.

3) эксцесс кривой распределения должен быть равен 0. Кривые с положительным эксцессом значительно вертикальнее кривой нормального распределения. Кривые с отрицательным эксцессом являются более покатистыми по сравнению с кривой нормального распределения;

4) после определения среднего значения распределения частоты и стандартного oтклонения находят следующие четыре интервала распределения сравнивают их с действительными данными ряда:

а) lectio4— к интервалу должно относиться около 25% частоты совокупности,

б) lectio5— к интервалу должно относиться около 50% частоты совокупности,

в) lectio6— к интервалу должно относиться около 75% частоты совокупности,

г) lectio7— к интервалу должно относиться около 100% частоты совокупности.

6.1.2 Критерий Стьюдента ( t-критерий)

Критерий позволяет найти вероятность того, что оба средних значения в выборке относятся к одной и той же совокупности. Данный критерий наиболее часто используется для проверки гипотезы: «Средние двух выборок относятся к одной и той же совокупности».

При использовании критерия можно выделить два случая. В первом случае его применяют для проверки гипотезы о равенстве генеральных средних двух неза­висимых, несвязанных выборок (так называемый двухвыборочный t-критерий). В этом случае есть контрольная группа и экспериментальная (опытная) группа, количество испытуемых в группах может быть различно.

Во втором случае, когда одна и та же группа объектов порождает числовой матери­ал для проверки гипотез о средних, используется так называемый парный t-критерий. Выборки при этом называют зависимыми, связанными.

Статистика критерия для случая несвязанных, независимых выборок равна:

lectio8(1)

где lectio9, lectio10— средние арифметические в эксперименталь­ной и контрольной группах,

lectio11— стан­дартная ошибка разности средних арифметических. Находится из формулы:

lectio12, (2)

где n 1 и n 2 соответственно величины первой и второй выборки.

Если n 1= n 2, то стандартная ошибка разности средних арифметических будет считаться по формуле:

lectio13(3)

где n величина выборки.

Подсчет числа степеней свободы осуществля­ется по формуле:

Далее необходимо срав­нить полученное значение t эмп с теоретическим значением t—рас­пределения Стьюдента (см. приложение к учеб­никам статистики). Если t эмп t крит, то гипотеза H 0 принимается, в противном случае нулевая гипотеза отвергается и принимается альтернативная гипотеза.

Таблица 1. Результаты эксперимента

Первая группа (экспериментальная) N 1=11 человек

Вторая группа (контрольная)

12 14 13 16 11 9 13 15 15 18 14

13 9 11 10 7 6 8 10 11

Общее количество членов выборки: n 1=11, n 2=9.

Расчет средних арифметических: Хср=13,636; Y ср=9,444

Стандартное отклонение: s x=2,460; s y =2,186

По формуле (2) рассчитываем стандартную ошибку разности арифметических средних:

lectio14

Считаем статистику критерия:

lectio15

Сравниваем полученное в эксперименте значение t с табличным значением с учетом степеней свободы, равных по формуле (4) числу испытуемых минус два (18).

Табличное значение tкрит равняется 2,1 при допущении возможности риска сделать ошибочное сужде­ние в пяти случаях из ста (уровень значимости=5 % или 0,05).

Если полученное в эксперименте эмпирическое значение t превы­шает табличное, то есть основания принять альтернативную гипотезу (H1) о том, что учащиеся экспериментальной группы показывают в среднем более высокий уровень знаний. В эксперименте t=3,981, табличное t=2,10, 3,981>2,10, откуда следует вывод о преимуществе эксперимен­тального обучения.

Здесь могут возникнуть такие вопросы:

1. Что если полученное в опыте значение t окажется меньше табличного? Тогда надо принять нулевую гипотезу.

2. Доказано ли преимущество экспериментального метода? Не столько доказано, сколько показано, потому что с самого начала допускается риск ошибиться в пяти случаях из ста (р=0,05). Наш эксперимент мог быть одним из этих пяти случаев. Но 95% возможных случаев говорит в пользу альтернативной гипотезы, а это достаточно убедительный аргумент в статистическом доказательстве.

3. Что если в контрольной группе результаты окажутся выше, чем в экспериментальной? Поменяем, например, местами, сделав lectio16средней арифметической эксперимен­тальной группы, a lectio17— контрольной:

lectio18

Отсюда следует вывод, что новый метод пока не про­явил себя с хорошей стороны по разным, возможно, при­чинам. Поскольку абсолютное значение 3,9811>2,1, принимается вторая альтернативная гипотеза (Н2) о пре­имуществе традиционного метода.

В случае связанных выборок с равным числом измерений в каждой можно использовать более простую формулу t-критерия Стьюдента.

Вычисление значения t осуществляется по формуле:

lectio19(5)

Sd вычисляется по следующей формуле:

lectio21(6)

Если t эмп t крит, то нулевая гипотеза принимается, в противном случае принимается альтернативная.

Пример 2. Изучался уровень ориентации учащихся на художественно-эстети­ческие ценности. С целью активизации формирования этой ориентации в экспериментальной группе проводились бе­седы, выставки детских рисунков, были организованы по­сещения музеев и картинных галерей, проведены встречи с музыкантами, художниками и др. Закономерно встает вопрос: какова эффективность проведенной работы? С целью проверки эффективности этой работы до начала эксперимента и после давался тест. Из методических со­ображений в таблице 2 приводятся результаты небольшо­го числа испытуемых. [2]

Таблица 2. Результаты эксперимента

до начала экспери­мента (Х)

Вначале произведем расчет по формуле:

lectio22

Затем применим формулу (6), получим:

lectio23

И, наконец, следует применить формулу (5). Получим:

lectio24

Число степеней свободы: k =10-1=9 и по таблице При­ложения 1 находим tкрит =2.262, экспериментальное t=6,678, откуда следует возможность принятия альтерна­тивной гипотезы (H1) о достоверных различиях средних арифметических, т. е. делается вывод об эффективности экспериментального воздействия.

6.1.3 F — критерий Фишера

Критерий Фишера позволяет сравнивать величины выбороч­ных дисперсий двух независимых выборок. Для вычисления Fэмп нуж­но найти отношение дисперсий двух выборок, причем так, что­бы большая по величине дисперсия находилась бы в числителе, а меньшая – в знаменателе. Формула вычисления критерия Фи­шера такова:

lectio25(8)

где lectio26— дисперсии первой и второй выборки соответственно.

Так как, согласно условию критерия, величина числителя должна быть больше или равна величине знаменателя, то значе­ние Fэмп всегда будет больше или равно единице.

Чис­ло степеней свободы определяется также просто:

В Приложе­нии 1 критические значения критерия Фишера находятся по величинам k 1 (верхняя строчка таблицы) и k 2 (левый столбец таблицы).

Если t эмп> t крит, то нулевая гипотеза принимается, в противном случае принимается альтернативная.

Пример 3. В двух третьих классах проводилось тестирование умственного развития по тесту ТУРМШ десяти учащихся. [3] Полученные значения величин средних достоверно не различались, однако психолога интересует вопрос — есть ли различия в степени однородности показателей умственного развития между классами.

Решение. Для критерия Фишера необходимо сравнить дис­персии тестовых оценок в обоих классах. Резуль­таты тестирования представлены в таблице:

Рассчитав дисперсии для переменных X и Y, получаем:

Тогда по формуле (8) для расчета по F критерию Фишера находим:

lectio27

6.2 Непараметрические критерии

Сравнивая на глазок (по процентным соотношениям) результаты до и после какого-либо воздействия, исследователь приходит к заключению, что если наблюдаются различия, то имеет место различие в сравниваемых выборках. Подобный подход категорически неприемлем, так как для процентов нельзя определить уровень достоверности в различиях. Проценты, взятые сами по себе, не дают возможности делать статистически достоверные выводы. Чтобы доказать эффективность какого-либо воздействия, необходимо выявить статистически значимую тенденцию в смещении (сдвиге) показателей. Для решения подобных задач исследователь может использовать ряд критериев различия. Ниже будет рассмотрены непараметрические критерии: критерий знаков и критерий хи-квадрат.

6.2.1 Критерий знаков ( G-критерий)

Критерий предназначен для срав­нения состояния некоторого свойства у членов двух зави­симых выборок на основе измерений, сделанных по шка­ле не ниже ранговой.

Нулевая гипотеза формулируются следующим обра­зом: в состоянии изучаемого свойства нет значимых различий при первичном и вторичном измерениях. Альтернативная гипотеза: законы распределения величин X и У различны, т. е. состояния изучаемого свойства существенно раз­личны в одной и той же совокупности при первичном и вторичном измерениях этого свойства.

Ста­тистика критерия (Т) определяется следую­щим образом:

Пример 4. Учащиеся выполняли контрольную ра­боту, направленную на проверку усвоения некоторого понятия. Пятнадцати учащимся затем предложили электронное пособие, составленное с целью фор­мирования данного понятия у учащихся с низким уров­нем обучаемости. После изучения пособия учащиеся снова выполняли ту же контрольного работу, которая оценивалась по пятибалльной системе.

Результаты двукратного выполнения ра­боты представляют измерения по шкале по­рядка (пятибалльная шкала). В этих условиях возмож­но применение знакового критерия для выявления тенденции изменения состояния знаний учащихся после изучения пособия, так как выполняются все допуще­ния этого критерия.

Результаты двукратного выполнения работы (в бал­лах) 15 учащимися запишем в форме таблицы (см. табл. 1). [4]

Источник

Что показывает коэффициент фишера

Критерий Фишера позволяет сравнивать величины выборочных дисперсий двух рядов наблюдений. Для вычисления нужно найти отношение дисперсий двух выборок, причем так, чтобы большая по величине дисперсия находилась бы в числителе, а меньшая знаменателе. Формула вычисления по критерию Фишера F такова:

Для критерия Фишера необходимо сравнить дисперсии тестовых оценок в обоих классах. Результаты тестирования представлены в табл. 11.

№ учащихся Первый класс X Второй класс Y
1 90 41
2 29 49
3 39 56
4 79 64
5 88 72
6 53 65
7 34 63
8 40 87
9 75 77
10 79 62
Суммы 606 636
Среднее 60,6 63,6

Рассчитав дисперсии для переменных X и Y, получаем

Строим «ось значимости»:

Для применения критерия F Фишера необходимо соблюдать следующие условия:

1. Измерение может быть проведено в шкале интервалов и отношений.

2. Сравниваемые выборки должны быть распределены по нормальному закону.

Источник

Критерий Фишера и критерий Стьюдента в эконометрике

С помощью критерия Фишера оценивают качество регрессионной модели в целом и по параметрам.

Для этого выполняется сравнение полученного значения F и табличного F значения. F-критерия Фишера. F фактический определяется из отношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы:

Ffact

где n — число наблюдений;
m — число параметров при факторе х.

F табличный — это максимальное значение критерия под влиянием случайных факторов при текущих степенях свободы и уровне значимости а.

Уровень значимости а — вероятность не принять гипотезу при условии, что она верна. Как правило а принимается равной 0,05 или 0,01.

Если Fтабл > Fфакт то признается статистическая незначимость модели, ненадежность уравнения регрессии.

Таблицы по нахождению критерия Фишера и Стьюдента

Таблицы значений F-критерия Фишера и t-критерия Стьюдента Вы можете посмотреть здесь.

Табличное значение критерия Фишера вычисляют следующим образом:

Для нахождения табличного значения критерия Стьюдента определяют число степеней свободы, которое определяется по формуле n — m — 1 и находят его значение при определенном уровне значимости (0,10, 0,05, 0,01).

Критерии Стьюдента

Для оценки статистической значимости модели по параметрам рассчитывают t-критерии Стьюдента.

Оценка значимости модели с помощью критерия Стьюдента проводится путем сравнения их значений с величиной случайной ошибки:

t stat

Случайные ошибки коэффициентов линейной регрессии и коэффициента корреляции определяются по формулам:

mab

Сравнивая фактическое и табличное значения t-статистики и принимается или отвергается гипотеза о значимости модели по параметрам.

Зависимость между критерием Фишера и значением t-статистики Стьюдента определяется так

F t

Как и в случае с оценкой значимости уравнения модели в целом, модель считается ненадежной если tтабл > tфакт

Видео лекциий по расчету критериев Фишера и Стьюдента

Для более подробного изучения расчетов критериев Фишера и Стьюдента советуем посмотреть это видео

Лекция 1. Критерии и Гипотезы

Лекция 2. Критерии и Гипотезы

Лекция 3. Критерии и Гипотезы

Определение доверительных интервалов

Для построения доверительного интервала определяется предельная ошибка А для обоих показателей:

ErrorAB

Формулы для нахождения доверительных интервалов выглядят так

doveritInt

Прогнозное значение у определяется с помощью подстановки в
уравнение регрессии прогнозного значения х. Вычисляется средняя стандартная ошибка прогноза

ErrorPrognoz

SigmaOst

и находится доверительный интервал

doveritInt2

Задача регрессионного анализа в предмете эконометрика состоит в анализе дисперсии изучаемого показателя y:

Dy

TSSобщая сумма квадратов отклонений (TSS)

RSSсумма квадратов отклонений, обусловленная регрессией (RSS)

ESSостаточная сумма квадратов отклонений (ESS)

Долю дисперсии, обусловленную регрессией, в общей дисперсии показателя у характеризует коэффициент детерминации R, который должен превышать 50% (R 2 > 0,5). В контрольных по эконометрике в ВУЗах этот показатель рассчитывается всегда.

Источник

Комфорт
Adblock
detector