расположение осей в изометрии

Расположение осей в изометрии

Аксонометрические проекции применяются в качестве вспомогательных к чертежам в тех случаях, когда требуется поясняющее наглядное изображение формы детали. В ГОСТ 2.317-69 стандартизованы прямоугольные и косоугольные аксонометрические проекции с различным расположением осей.

ПРЯМОУГОЛЬНЫЕ ПРОЕКЦИИ

Изометрическая проекция

Линии штриховки сечений в аксонометрических проекциях наносят параллельно одной из диагоналей проекций квадратов, лежащих в соответствующих координатных плоскостях, стороны которых параллельны аксонометрическим осям. Для изометрической проекции вариант штриховки по плоскостям приведен на рис. 2.

Окружности, лежащие в плоскостях, параллельных плоскостям проекций, проецируются на аксонометрическую плоскость проекций в эллипсы (рис. 3).

image004

Построение эллипсов в изометрической проекции окружности можно заменить построением овалов, Следует отметить, что очертание любого циркульного овала не совпадает с очертанием эллипса, имеющего такие же оси, хотя и приближается к нему. Один из способов построения овала приведен на рис. 4.

Пример изображения детали в прямоугольной изометрии приведен на рис. 5.

image006

Диметрическая проекция

image007

Штриховка сечений в прямоугольной диметрической проекции показана на рис.7, а пример изображения детали – на рис. 9.

Окружности, лежащие в плоскостях, параллельных плоскостям проекций, проецируются на аксонометрическую плоскость проекций в эллипсы (рис. 8).

image009

КОСОУГОЛЬНЫЕ ПРОЕКЦИИ

Фронтальная изометрическая проекция

Штриховка сечений в косоугольной фронтальной изометрической проекции показана на рис. 11, а пример выполнения изображения детали – на рис.13.

Окружности, лежащие в плоскостях, параллельных фронтальной плоскости проекций, проецируются на аксонометрическую плоскость в окружности, а окружности, лежащие в плоскостях, параллельных горизонтальной и профильной плоскостям проекций, – в эллипсы (рис. 12).

image013

Горизонтальная изометрическая проекция

Штриховка сечений в косоугольной горизонтальной изометрической проекции показана на рис.15, а пример изображения детали – на рис. 17.

Окружности, лежащие в плоскостях, параллельных горизонтальной плоскости проекций, проецируются на аксонометрическую плоскость проекций в окружности, а окружности, лежащие в плоскостях, параллельных фронтальной и профильной плоскостям проекций, – в эллипсы (рис.16).

image014

Фронтальная диметрическая проекция

Штриховка сечений в косоугольной фронтальной диметрии показана на рис.19, а пример изображения детали – на рис.21

Источник

Аксонометрические проекции

Согласно ГОСТ 2.317-69, из прямоугольных аксонометрических проекций рекомендуется применять прямоугольные изометрию и диметрию.

В прямоугольной изометрии размеры предмета по всем трем измерениям сокращаются на 18 %. ГОСТ рекомендует изометрическую проекцию строить без сокращения по осям координат), что соответствует увеличению изображения против оригинала в 1,22 раза.

На рисунках 172 и 173 показано расположение осей в изометрии и диметрии.

172

173

Построение окружности в аксонометрии

При параллельном проецировании окружности на какую-нибудь плоскость П* получаем ее изображение в общем случае в виде эллипса (рисунок 174).

174

ГОСТ 2.317-69 определяет положение окружностей, лежащих в плоскостях, параллельных плоскостям проекций для прямоугольной изометрической проекции (рисунок 175) и для прямоугольной диметрии (рисунок 177).

175

плоскостях параллельных плоскостям проекций

176

177

плоскостях параллельных плоскостям проекций

178

Как бы ни была расположена плоскость окружности, сначала целесообразно построить параллелограмм A*B*C*D* – параллельную проекцию квадрата ABCD, описанного около данной окружности, а затем с помощью восьми точек и восьми касательных вписать в него эллипс. Точки 1, 3, 5 и 7 – середины сторон параллелограмма. На отрезке 3*B*, как на гипотенузе, построить прямоугольный равнобедренный треугольник 3*KB*; из точки 3* радиусом 3*K описать полуокружность, которая пересечет A*B* в точках L и M; эти точки делят отрезок 3*A* и равный ему отрезок 3*B* в отношении 3:7; через точки L и М провести прямые параллельные боковым сторонам параллелограмма, и отметить точки 2*, 4*, 6* и 8* расположенные на диагоналях. Построить касательные к эллипсу в найденных точках. Касательные t2 и t6 параллельны BD, а касательные t4 и t8 параллельны AC. Получив восемь точек и столько же касательных, можно с достаточной точностью вычертить эллипс (рисунок 179).

179

Построение аксонометрических изображений

Переход от ортогональных проекций предмета к аксонометрическому изображению рекомендуется осуществлять в такой последовательности:

На ортогональном чертеже размечают оси прямоугольной системы координат, к которой и относят данный предмет. Оси ориентируют так, чтобы они допускали удобное измерение координат точек предмета. Например, при построении аксонометрии тела вращения одну из координатных осей целесообразно совместить с осью тела (рисунок 180)

180

2. Строят аксонометрические оси с таким расчетом, чтобы обеспечить наилучшую наглядность изображения и видимость тех или иных точек предмета.

3. По одной из ортогональных проекций предмета чертят вторичную проекцию.

4. Создают аксонометрическое изображение, для наглядности делают вырез четверти.

Штриховка в аксонометрии

Согласно ГОСТ 2.317-68 ЕСКД линии штриховки сечений в аксонометрических проекциях наносят параллельно одной из диагоналей проекций квадратов, лежащих в соответствующих координатных плоскостях, стороны которых параллельны аксонометрическим осям (рисунок 181).

181

При нанесении размеров выносные линии проводят параллельно аксонометрическим осям, размерные линии – параллельно измеряемому отрезку.

В аксонометрических проекциях спицы маховиков и шкивов, ребра жесткости и подобные элементы штрихуют.

Источник

Аксонометрические проекции

Способ аксонометрического проецирования состоит в том, что данный предмет вместе с осями прямоугольных координат, к которым эта система относится в пространстве, параллельно проецируется на некоторую плоскость α (Рисунок 4.1).

risIG 4 1
Рисунок 4.1
Направление проецирования S определяет положение аксонометрических осей на плоскости проекций α, а также коэффициенты искажения по ним. При этом необходимо обеспечить наглядность изображения и возможность производить определения положений и размеров предмета.
В качестве примера на Рисунке 4.2 показано построение аксонометрической проекции точки А по ее ортогональным проекциям.
risIG 4 2
Рисунок 4.2
Здесь буквами k, m, n обозначены коэффициенты искажения по осям OX, OY и OZ соответственно. Если все три коэффициента равны между собой, то аксонометрическая проекция называется изометрической, если равны между собой только два коэффициента, то проекция называется диметрической, если же k≠m≠n, то проекция называется триметрической.
Если направление проецирования S перпендикулярно плоскости проекций α, то аксонометрическая проекция носит названия прямоугольной. В противном случае, аксонометрическая проекция называется косоугольной.
ГОСТ 2.317-2011 устанавливает следующие прямоугольные и косоугольные аксонометрические проекции:

Ниже приводятся параметры только трех наиболее часто применяемых на практике аксонометрических проекций.
Каждая такая проекция определяется положением осей, коэффициентами искажения по ним, размерами и направлениями осей эллипсов, расположенных в плоскостях, параллельных координатным плоскостям. Для упрощения геометрических построений коэффициенты искажения по осям, как правило, округляются.

4.1. Прямоугольные проекции

4.1.1. Изометрическая проекция

Направление аксонометрических осей приведено на Рисунке 4.3.
ris 4 3 lec
Рисунок 4.3 – Аксонометрические оси в прямоугольной изометрической проекции

Действительные коэффициенты искажения по осям OX, OY и OZ равны 0,82. Но с такими значениями коэффициентов искажения работать не удобно, поэтому, на практике, используются приведенные коэффициенты искажений. Эта проекция обычно выполняется без искажения, поэтому, приведенные коэффициенты искажений принимается k = m = n =1. Окружности, лежащие в плоскостях, параллельных плоскостям проекций, проецируются в эллипсы, большая ось которых равна 1,22, а малая – 0,71 диаметра образующей окружности D.

Большие оси эллипсов 1, 2 и 3 расположены под углом 90º к осям OY, OZ и OX, соответственно.

Пример выполнения изометрической проекции условной детали с вырезом приводится на Рисунке 4.4.

risIG 4 4
Рисунок 4.4 – Изображение детали в прямоугольной изометрической проекции

4.1.2. Диметрическая проекция

Положение аксонометрических осей проводится на Рисунке 4.5.

Для построения угла, приблизительно равного 7º10´, строится прямоугольный треугольник, катеты которого составляют одну и восемь единиц длины; для построения угла, приблизительно равного 41º25´ — катеты треугольника, соответственно, равны семи и восьми единицам длины.

Коэффициенты искажения по осям ОХ и OZ k=n=0,94 а по оси OY – m=0,47. При округлении этих параметров принимается k=n=1 и m=0,5. В этом случае размеры осей эллипсов будут: большая ось эллипса 1 равна 0,95D и эллипсов 2 и 3 – 0,35D (D – диаметр окружности). На Рисунке 4.5 большие оси эллипсов 1, 2 и 3 расположены под углом 90º к осям OY, OZ и OX, соответственно.

Пример прямоугольной диметрической проекции условной детали с вырезом приводится на Рисунке 4.6.

ris 4 5 lec
Рисунок 4.5 – Аксонометрические оси в прямоугольной диметрической проекции
ris 4 6 lec
Рисунок 4.6 – Изображение детали в прямоугольной диметрической проекции

4.2 Косоугольные проекции

4.2.1 Фронтальная диметрическая проекция

Коэффициент искажения по оси OY равен m=0,5 а по осям OX и OZ — k=n=1.

risIG 4 7

Рисунок 4.7 – Аксонометрические оси в косоугольной фронтальной диметрической проекции

Окружности, лежащие в плоскостях, параллельных фронтальной плоскости проекций, проецируются на плоскость XOZ без искажения. Большие оси эллипсов 2 и 3 равны 1,07D, а малая ось – 0,33D (D — диаметр окружности). Большая ось эллипса 2 составляет с осью ОХ угол 7º 14´, а большая ось эллипса 3 составляет такой же угол с осью OZ.

Пример аксонометрической проекции условной детали с вырезом приводится на Рисунке 4.8.

Как видно из рисунка, данная деталь располагается таким образом, чтобы её окружности проецировались на плоскость XОZ без искажения.

risIG 4 8

Рисунок 4.8 – Изображение детали в косоугольной фронтальной диметрической проекции

4.3 Построение эллипса

4.3.1 Построения эллипса по двум осям

На данных осях эллипса АВ и СD строятся как на диаметрах две концентрические окружности (Рисунок 4.9, а).

Одна из этих окружностей делится на несколько равных (или неравных) частей.

Через точки деления и центр эллипса проводятся радиусы, которые делят также вторую окружность. Затем через точки деления большой окружности проводятся прямые, параллельные линии АВ.

Точки пересечения соответствующих прямых и будут точками, принадлежащими эллипсу. На Рисунке 4.9, а показана лишь одна искомая точка 1.

risIG 4 9
а б в
Рисунок 4.9 – Построение эллипса по двум осям (а), по хордам (б)

4.3.2 Построение эллипса по хордам

Диаметр окружности АВ делится на несколько равных частей, на рисунке 4.9,б их 4. Через точки 1-3 проводятся хорды параллельно диаметру CD. В любой аксонометрической проекции (например, в косоугольной диметрической) изображаются эти же диаметры с учетом коэффициента искажения. Так на Рисунке 4.9,б А1В1=АВ и С1 D1 = 0,5CD. Диаметр А 1В1 делится на то же число равных частей, что и диаметр АВ, через полученные точки 1-3 проводятся отрезки, равные соответственным хордам, умноженным на коэффициент искажение (в нашем случае – 0,5).

4.4 Штриховка сечений

Линии штриховки сечений (разрезов) в аксонометрических проекциях наносятся параллельно одной из диагоналей квадратов, лежащих в соответствующих координатных плоскостях, стороны которых параллельны аксонометрическим осям (Рисунок 4.10: а – штриховка в прямоугольной изометрии; б – штриховка в косоугольной фронтальной диметрии).

risIG 4 10
а б
Рисунок 4.10 – Примеры штриховки в аксонометрических проекциях

Источник

Аксонометрические проекции

Настоящий стандарт устанавливает аксонометрические проекции, применяемые в чертежах всех отраслей промышленности и строительства.

Прямоугольные проекции

001

Рисунок 1. Расположение аксонометрических осей
прямоугольной изометрической проекции

Положение аксонометрических осей приведено на рис.1.

Коэффициент искажения по осям x, y, z равен 0.82.

Изометрическую проекцию для упрощения, как правило выполняют без искажения по осям x, y, z, т.е. приняв коэффициент искажения равным 1.

Окружности, лежащие в плоскостях, параллельных плоскостям проекций, проецируются на аксонометрическую плоскость проекций в эллипсы (рис.2)

Пример изометрической проекции детали приведен на рис. 3.

002

Рисунок 2. Окружность в изометрии

1-эллипс (большая ось расположена под углом 90 0 к оси y); 2-эллипс (большая ось расположена под углом 90 0 к оси z); 3-эллипс (большая ось расположена под углом 90 0 к оси x).

003

Рисунок 3. Изометрическое изображение детали

004

Рисунок 4. Расположение аксонометрических осей
прямоугольной диметрической проекции

Положение аксонометрических осей приведено на рис.4.

Диметрическую проекцию, как правило, без искажения по осям x и z и с коэффициентом искажения 0.5 по оси y.

Окружности, лежащие в плоскостях, параллельных плоскостям проекций, проецируются на аксонометрическую плоскость проекций в эллипсы (рис.5).

Пример диметрической проекции детали приведен на рис.6.

005

Рисунок 5. Окружность в диметрии

1-эллипс (большая ось расположена под углом 90 0 к оси y); 2-эллипс (большая ось расположена под углом 90 0 к оси z); 3-эллипс (большая ось расположена под углом 90 0 к оси x).

006

Рисунок 6. Диметрическое изображение детали

Косоугольные проекции

007

Рисунок 7. Расположение аксонометрических осей
фронтальной изометрической проекции

Положение аксонометрических осей приведено на рис. 7.

Допускается применять фронтальные изометрические проекции с углом наклона оси у 30 и 60°.

Фронтальную изометрическую проекцию выполняют без искажения по осям х, у, z.

Окружности, лежащие в плоскостях, параллельных фронтальной плоскости проекций, проецируются на аксонометрическую плоскость в окружности, а окружности, лежащие в плоскостях, параллельных горизонтальной и профильной плоскостям проекции, — в эллипсы (рис. 8).

Большая ось эллипсов 2 и 3 равна 1,3, а малая ось — 0,54 диаметра окружности.

Пример фронтальной изометрической проекции детали приведен на рис. 9.

008

Рисунок 8. Изображение окружности на фронтальной изометрической проекции

1-окружность; 2-эллипс (большая ось расположена под углом 22 0 30 / к оси x ); 3-эллипс (большая ось расположена под углом 22 0 30 / к оси z ).

009

010

Рисунок 10. Расположение аксонометрических осей
горизонтальной изометрической проекции

Положение аксонометрических осей приведено на рис. 10.

Допускается применять горизонтальные изометрические проек­ции с углом наклона оси у 45 и 60°, сохраняя угол между осями х и у 90°.

Окружности, лежащие в плоскостях, параллельных гори­зонтальной плоскости проекций, проецируются на аксонометричес­кую плоскость проекций в окружности, а окружности лежащие в плоскостях, параллельных фронтальной и профильной плос­костям проекций— в эллипсы (рис. 11).

Большая ось эллипса / равна 1,37, а малая ось — 0,37 диамет­ра окружности.

Большая ось эллипса 3 равна 1,22, а малая ось — 0,71 диа­метра окружности.

Пример горизонтальной изометрической проекции при­веден на рис. 12.

011

Рисунок 11. Изображение окружности на горизонтальной изометрической проекции

012

Рисунок 12. Изображение детали на горизонтальной изометрической проекции

013

Рисунок 13. Расположение аксонометрических осей
фронтальной диметрической проекции

Положение аксонометрических осей приведено на рис. 13.

Допускается применять фронтальные диметрические проекции

с углом наклона оси у 30 и 60°.

Коэффициент искажения по оси у равен 0,5, а по осям x и z-1.

Пример фронтальной диметрической проекции детали приведен на рис.15.

014

Рисунок 14. Изображение окружности на фронтальной диметрической проекции

015

Рисунок 15. Изображение детали на фронтальной диметрической проекции

Условности и нанесение размеров

Линии штриховки сечений в аксонометрических проекциях наносят параллельно одной из диагоналей проекций квадратов, лежащих в соответствующих координатных плоскостях, стороны которых параллельны аксонометрическим осям (рис. 16).

016 1 016 2
Рисунок 16. Штриховка сечений в аксонометрических проекциях

При нанесении размеров выносные линии проводят параллельно аксонометрическим осям, размерные линии — параллельно измеряемому отрезку (рис. 17).

В разрезах на аксонометрических проекциях спицы маховиков и шкивов, ребра жесткости и подобные элементы штрихуют (см. рис. 6).

При выполнении в аксонометрических проекциях зубчатых колес, реек, червяков и подобных элементов допускается применять условности по ГОСТ 2.402—68.

В аксонометрических проекциях резьбу изображают по ГОСТ 2.311—68.

Допускается изображать профиль резьбы полностью или частично, как показано на рис. 18.

В необходимых случаях допускается применять другие теоретически обоснованные аксонометрические проекции.

Источник

Понятие об аксонометрических проекциях

Наглядные изображения применяют для пояснения чертежей деталей и машин. По ним легче представить форму предмета, чем по чертежу в трёх видах.

Одним из видов наглядных изображений являются аксонометрические изображения.

Аксонометрия в переводе с греческого означает «измерение по осям».

Аксонометрические проекции получают путём проецирования параллельными лучами

предмета, который связан с осями прямоугольных координат, на некоторую плоскость Р (рис. 103).

Таким образом, аксонометрическая проекция – это проекция только на одну плоскость.

Чтобы изображение получилось наглядным, проецирующие лучи не должны быть параллельны ни одной оси координат. Тогда на плоскости Р будут, хоть и с искажениями, изображены все три измерения предмета.

Аксонометрические проекции в зависимости от направления проецирования делятся на два вида: прямоугольные, когда направление проецирования перпендикулярно плоскости Р (угол φ=90°), и косоугольные, когда угол φ≠90°.

Если плоскость Р не параллельна ни одной из координатных плоскостей x,y,z, то на аксонометрической проекции у предмета искажаются все три его измерения. Если же плоскость Р параллельна одной или двум осям координат, то у предмета искажаются размеры соответственно по двум его измерениям или по одному.

Величина искажения определяется коэффициентом искажения, который равен отношению длины аксонометрической проекции отрезка, параллельного соответствующей оси координат, к его действительной длине. Любая аксонометрическая проекция имеет три коэффициента искажения по числу осей координат.

В зависимости от того, разные они или одинаковые, аксонометрические проекции делят на изометрические (коэффициенты искажения равны по всем трём осям) и триметрические (коэффициенты искажения по всем осям разные).

Стандартные виды аксонометрии. Изометрия. Диметрия

Наиболее распространёнными видами аксонометрических проекций являются прямоугольная изометрическая проекция (изометрия) и прямоугольная диметрическая проекция (диметрия), основные правила построения которых определены стандартом.

Прямоугольная изометрия представляет собой аксонометрическую проекцию с направлением проецирования, перпендикулярным к плоскости аксонометрических проекций одинаковыми по всем трём осям коэффициентами искажения, равными 0,82.

Оси изометрии (рис. 104а) составляют между собой углы 120°. Ось Z расположена вертикально. Для упрощения построения коэффициент искажения принимают равным 1.

Изображение при этом получается увеличенным, но вид его не меняется, т.к. сохраняется пропорциональность всех его размеров.

На рис. 104б и в приведены два способа построения осей в изометрии.

Прямоугольная диметрия представляет собой аксонометрическую проекцию с направлением проецирования, перпендикулярным аксонометрической плоскости проекций Р и одинаковыми коэффициентами искажения по осям х и z.

Ось х (рис. 105а) составляет с горизонтальной прямой угол 7°10′, а ось у – угол 41°25′.

Ось z занимает вертикальное положение. На рис. 105б показан графический способ построения осей диметрии.

В диметрии коэффициенты искажения по осям х и z равны 0,94, а по оси у – 0,47. При построениях первый коэффициент округляют до 1, а второй – до 0,5. Таким образом, отрезки, параллельные осям координат х и z, откладывают в натуральную величину, а длину отрезков, параллельных оси у, уменьшают в два раза.

Построение окружности в аксонометрии

Изометрия. Изометрические проекции окружностей, расположенных в плоскостях проекций или в плоскостях, им параллельных, есть эллипсы (рис. 106).

Большие оси этих эллипсов равны l,22Dокр, а малые 0,71Dокр, где Dокр – диаметр изображаемой окружности. Большая ось эллипсов всегда перпендикулярна к той аксонометрической оси, которая отсутствует в плоскости окружности, а малая совпадает с этой осью или параллельна ей.

Практически при построении изометрии окружности эллипс обычно заменяют близким к нему по форме овалом, т.к. построение овала значительно проще.

Наиболее простой способ построения овала показан на рис. 107.

На рис. 108а,б построены изометрии окружностей, расположенных во фронтальной и профильной плоскостях.

Окружности, расположенные во фронтальной плоскости, проецируются в виде эллипсов с большой осью, равной 1,06Dокр, а малой – 0,94Dокр. Большие оси эллипсов, как и в изометрии, перпендикулярны к той аксонометрической оси, которая отсутствует в данной плоскости, а малые оси совпадают с направлением этой оси.

Диметрии окружностей (эллипсы) обычно заменяют овалами, размеры осей которых равны размерам соответствующих осей эллипсов. Построение этих овалов показано на рис. 110. На рис. 110а построения понятны по чертежу.

На рис. 110б строим оси диметрии хр, ур, zр. Затем строим прямую, перпендикулярную оси ур. Отложив на осях хр и zр радиус заданной окружности, получим точки М, К, N, L, которые являются точками сопряжения дуг овала. Через точки М и N проводим горизонтальные прямые. В пересечении этих прямых с осью ур и перпендикуляром к ней получим точки О1, О2, О3, О4. Из центров O1 и О3 опишем дуги радиусом R13 K, а из центров О2 и О4 – дуги радиусом R22M.

Аксонометрические изображения предметов

Приступая к построению аксонометрической проекции предмета, следует выбрать вид аксонометрии, обеспечивающий наибольшую наглядность изображения. Затем предмет связывают с системой прямоугольных координат, оси которой обычно совмещают с осями симметрии предмета. Только после этого можно приступить к построению аксонометрии.

Построение аксонометрии предмета обычно начинают с построения аксонометрии одной из его проекций (вторичной проекции). Затем полученное изображение дополняют построением третьего измерения всех его точек.

На рис. 111 показан пример построения прямоугольной изометрии предмета через построение его горизонтальной проекции.

На рис. 112 приведен пример построения прямоугольной изометрии детали путём построения её вторичной фронтальной проекции.

Для выявления внутренней формы предмета, изображённого в аксонометрии, в некоторых случаях применяют разрезы, которые условно называют вырезами. При этом используют две секущие плоскости, обычно совпадающие с плоскостями симметрии предмета (рис. 113).

ris. 111 рис. 111 ris. 112 рис. 112 ris. 113 рис. 113

Линии штриховки сечений в аксонометрических проекциях наносят параллельно одной из диагоналей проекций квадратов, лежащих в соответствующих координатных плоскостях. Стороны квадратов параллельны аксонометрическим осям (рис. 114).

Источник

Adblock
detector