- Геометрия. 8 класс
- Взаимное расположения прямой и окружности
- Урок 27. Геометрия 8 класс ФГОС
- В данный момент вы не можете посмотреть или раздать видеоурок ученикам
- Получите невероятные возможности
- Конспект урока «Взаимное расположения прямой и окружности»
- Окружность. Определение, взаимное расположение прямой и окружности
- Взаимное расположение прямой и окружности
Геометрия. 8 класс
Конспект
Рассмотрим окружность с центром в точке О и прямую a, её не пересекающую.
Расстояние от центра окружности до прямой равно длине перпендикуляра ОВ.
Это расстояние больше радиуса окружности.
Будем перемещать прямую, параллельно самой себе в сторону центра окружности. В определённый момент, прямая коснется окружности.
Расстояние от центра окружности до прямой равно радиусу окружности.
Прямая, имеющая с окружностью только одну общую точку называется касательной к окружности.
Общая точка прямой и окружности называется точкой касания.
Будем передвигать прямую далее к центру. Прямая пересечет окружность в двух точках.
Расстояние от центра окружности до прямой меньше радиуса.
Продолжая движение дальше, мы получим еще одну касательную к окружности.
Продолжим движение прямой дальше, она опять не будет иметь с окружностью общих точек.
Расстояние от центра окружности опять больше её радиуса.
Рассмотрим случай, когда прямая имеет с окружностью одну общую точку.
Сформулируем свойство касательной.
Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.
Дано: Окружность с центром О, a – касательная, B – точка касания.
Доказать: a ⊥ OB
Доказательство:
Пусть утверждение неверно, т.е. прямая a не перпендикулярна радиусу OB. Тогда OB – наклонная к прямой a. Перпендикуляр меньше наклонной, тогда расстояние от центра O до прямой a меньше радиуса. Следовательно, прямая a и окружность имеют 2 общие точки. Но это противоречит условию, т.к. прямая a – касательная. Значит наше предположение неверно и a ⊥ OB.
Верно и обратное утверждение:
Если прямая проходит через конец радиуса, лежащий на окружности, и перпендикулярна к этому радиусу, то она является касательной.
Проведем к окружности две касательные из одной точки, не принадлежащей окружности.
Выполняется утверждение:
Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
Докажите его самостоятельно, используя равенство треугольников AOВ и AOС.
Дано: окружность с центром O, касательные AB и AC
Доказать: AB = AC, ∠OAB = ∠OAC
Геометрия, 7-9: учеб. для общеобразоват. учреждений/ [Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.]. – М.: Просвещение, 2017.
Взаимное расположения прямой и окружности
Урок 27. Геометрия 8 класс ФГОС
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Взаимное расположения прямой и окружности»
Прежде чем приступить к новой теме, давайте вспомним, что такое окружность и вспомним основные элементы окружности.
Напомню, что окружностью называется геометрическая фигура, состоящая из всех точек, равноудаленных от точки О, которую называют центром окружности. Отрезок, соединяющий центр окружности с любой точкой на окружности, называется радиусом. Отрезок, соединяющий две любые точки окружности, называется хордой. Хорда, проходящая через центр окружности, называется диаметром и равна двум радиусам.
Сегодня мы выясним, сколько общих точек могут иметь окружность и прямая. Если прямая p проходит через центр окружности, то, очевидно, она имеет с окружностью две общие точки.
Теперь давайте рассмотрим случай, когда прямая p не проходит через центр окружности. Опустим на прямую перпендикуляр из центра окружности и обозначим его буквой d. Длина этого перпендикуляра – расстояние от центра окружности до данной прямой p.
Теперь давайте попробуем определить взаимное расположение прямой и окружности в зависимости от соотношения d и радиуса окружности. Возможны три случая:
Первый случай.
Получим, что ОА и ОB равны радиусу окружности, то есть точки А и B лежат на окружности. А, значит, они являются общими точками прямой p и окружности.
А может быть есть еще общие точки, у прямой и окружности? Допустим, что, действительно, есть еще одна общая точка C. Тогда медиана ОD равнобедренного треугольника OBC, проведенная к основанию AC, является высотой, то есть перпендикулярна прямой p. Поскольку середина отрезка AB – точка H не совпадает с серединой отрезка AC – точкой D, значит, отрезки ОD и ОH не совпадают. Получается, что из точки О проведены два перпендикуляра к прямой p, а такого быть не может.
То есть доказали, что если расстояние от центра окружности до прямой меньше радиуса окружности, то прямая и окружность имеют две общие точки. В таком случае, прямая называется секущей по отношению к окружности.
Рассмотрим второй случай.
В этом случае, длина перпендикуляра ОH=r, то есть точка H лежит на окружности. Больше общих точек у прямой и окружности нет.
Докажем это. Возьмем на прямой точку М. В любом случае ОМ будет больше OH, следовательно, точка М не будет лежать на окружности.
Таким образом, если расстояние от центра окружности до прямой равно радиусу окружности, то прямая и окружность имеют только одну общую точку. В таком случае, прямая называется касательной к окружности.
Теперь, давайте, рассмотрим третий случай.
В этом случае, , то есть, окружность и прямая не имеют общих точек. Можно сказать, что если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общих точек.
Задача. Определить взаимное расположение прямой и окружности, если:
а) ,
; б)
,
; в)
,
;
а) , прямая является секущей для окружности и они имеют две общие точки
б) , прямая и окружность не пересекаются
в) , прямая и окружность имеют одну общую точку
Задача. Диаметр окружности равен см
а расстояние от центра окружности до прямой равно:
см
дм
мм
см
дм
см.
Найдем радиус окружности.
см
Теперь сравним получившийся радиус с расстоянием от центра окружности до прямой. Не забудем все перевести в одни единицы измерения.
дм
см
мм
см
дм
см
Получим, что с прямой, расстояние до которой равно четырем целым пятнадцать сотых сантиметра, окружность имеет две общие точки.
С прямой, расстояние до которой равно двум дециметрам или двадцати сантиметрам, окружность не имеет общих точек.
С прямой, расстояние до которой равно сто три миллиметра, окружность не имеет общих точек.
Задача. Даны окружность с центром в точке и точка
. Где находится точка
, если
см, а длина отрезка
равна:
см,
см,
мм.
Решение. Для определения места положения точки А, сравним длину отрезка ОА с радиусом окружности.
Получим, что в случае, когда длина отрезка равна 4 сантиметрам, точка А лежит внутри окружности), в случае, когда ОА равно 10 сантиметрам, точка А лежит вне окружности (
). В случае, когда ОА равно 50 миллиметрам или, что тоже самое, 5 сантиметрам, точка А лежит на окружности(
мм
см)
Итак, сегодня на уроке мы рассмотрели три случая взаимного расположения прямой и окружности, в зависимости от соотношения расстояния от центра окружности до прямой и радиуса окружности. Повторим их.
Если расстояние от центра окружности до прямой меньше радиуса окружности, то прямая и окружность имеют две общие точки.
Если расстояние от центра окружности до прямой равно радиусу окружности, то прямая и окружность имеют только одну общую точку.
Если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общих точек.
Окружность. Определение, взаимное расположение прямой и окружности
Определение . Окружностью называется геометрическая фигура, состоящая из всех точек, расположенных на заданном расстоянии от данной точки. Эта данная точка называется центром окружности.
Отрезок, соединяющий любую точку окружности с её центром, называется радиусом. Все радиусы имеют одну и ту же длину.
Отрезок, соединяющий две точки окружности, называется хордой.
Хорда проходящая через центр окружности называется диаметром. Диаметр окружности равен удвоенному радиусу.
Существует 3 случая взаимного расположения прямой и окружности в зависимости от соотношения между радиусом r окружности и расстоянием d прямой от центра окружности.
1) d r. Если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общих точек.
Запись на доске.
1)еслиd r, тонет точек
Взаимное расположение прямой и окружности
Разделы: Математика
Дидактическая цель: формирование новых знаний.
Блоки | Этапы урока |
1 блок | Организационный момент. Подготовка к изучению нового материала через повторение и актуализацию опорных знаний. |
2 блок | Постановка цели. |
3 блок | Ознакомление с новым материалом. Практическая работа исследовательского характера. |
4 блок | Закрепление нового материала через решение задач |
5 блок | Рефлексия. Выполнение работы по готовому чертежу. |
6 блок | Подведение итогов урока. Постановка домашнего задания. |
1. Математика. Учебник для 6 класса общеобразовательных учреждений; / Г.В.Дорофеев, М., Просвещение, 2009 г.
2. Маркова В.И. Особенности преподавания геометрии в условиях реализации государственного образовательного стандарта: методические рекомендации, Киров, 2010 г.
3. Атанасян Л.С. Учебник “Геометрия 7-9”.
Подготовка к изучению нового материала через повторение и актуализацию опорных знаний.
Сообщает тему урока.
Выясняет, какие ассоциации возникают со словом “окружность”
Отвечают на вопрос учителя.
Организует практическую работу.
Организует работу с учебником.
Выполняют практическую работу, делают вывод.
Работают с учебником, находят вывод и сравнивают со своим.
Работа с учебником: с. 103 № 498, №499.
Решение задач
Выполняют решение задач, комментируют.
Учащиеся обращаются к целям, которые были поставлены, анализируют результаты: что нового узнали, чему научились на уроке
1. Организационный момент. Актуализация знаний.
Учитель сообщает тему урока. Выясняет, какие ассоциации возникают со словом “окружность”.
Чему равен диаметр окружности, если радиус равен 2,4 см?
Чему равен радиус, если диаметр равен 6,8 см?
Учащиеся ставят свои цели на урок, учитель обобщает их и ставит цели урока.
Составляется программа деятельности на уроке.
3. Ознакомление с новым материалом.
1) Работа с моделями: “Покажите на моделях, как могут располагаться прямая и окружность на плоскости”.
Сколько они имеют общих точек?
2) Выполнение практической работы исследовательского характера.
Цель. Установить свойство взаимного расположения прямой и окружности.
Оборудование: окружность, нарисованная на листе бумаги и палочка в качестве прямой, линейка.
Рисунок | Взаимное расположение | Число общих точек | Радиус окружности R | Расстояние от центра окружности до прямой d | Сравните R и d |
4. Сделайте вывод о взаимном расположении прямой и окружности в зависимости от соотношения R и d.
Вывод: Если расстояние от центра окружности до прямой равно радиусу, прямая касается окружности и имеет одну общую т очку с окружностью. Если расстояние от центра окружности до прямой больше радиуса, окружность и прямая не имеют общих точек. Если расстояние от центра окружности до прямой меньше радиуса, прямая пересекает окружность и имеет с ней две общих точки.
5. Первичное осмысление, закрепление через решение задач.
1) Задания учебника: №498, № 499.
а) прямая и окружность не имеют общих точек;
б) прямая является касательной к окружности;
3) Что можно сказать о взаимном расположении прямой и окружности, если диаметр окружности равен 10,3 см, а расстояние от центра окружности до прямой равно 4,15 см; 2 дм; 103 мм; 5,15 см, 1 дм 3 см.
4) Даны окружность с центром О и точка А. Где находится точка А, если радиус окружности равен 7 см, а длина отрезка ОА равна: а) 4 см; б) 10 см; в) 70 мм.
Чему научились на уроке?
Какую закономерность установили?
Выполнить на карточках следующее задание:
Проведите прямые через каждые две точки. Сколько общих точек имеет каждая из прямых с окружностью.
Прямая ______ и окружность не имеют общих точек.
Прямая ______ и окружность имеют только одну ___________ точку.
Прямые ______, _______, ________, _______ и окружность имеют две общие точки.
7. Подведение итогов. Постановка домашнего задания:
1) проанализировать кластер, составленный в начале урока, доработать его с учетом полученных знаний;